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Abstract

We show that for every n ≥ 1 and over any finite alphabet, there is a word whose
circular factors of length n have a one-to-one correspondence with the set of primitive
words. In particular, we prove that such a word can be obtained by a greedy algorithm,
or by concatenating all Lyndon words of length n in increasing lexicographic order. We
also look into connections between de Bruijn graphs of primitive words and Lyndon
graphs.

Finally, we also show that the shortest word that contains every p-power of length
pn over a k-letter alphabet has length between pkn and roughly (p + 1

k )kn, for all
integers p ≥ 1. An algorithm that generates a word which achieves the upper bound
is provided.

1 Introduction

In this paper, we study generalizations of de Bruijn words, and provide a few results related
to some well-studied collection of words. We first establish some notation. Given an integer
k ≥ 2, we define Σk := {0, 1, . . . , k − 1}, and let |w| denote the length of any finite word
w ∈ Σ∗k. Also, we define w[i] to be the ith symbol in w, and w[i . . j] to be the word
w[i]w[i + 1] · · ·w[j − 1]w[j], for any indices i, j such that 1 ≤ i ≤ j ≤ |w|. If i > j, then
we define w[i . . j] to be the empty word. Also, given any word x ∈ Σn

k and an integer
p ≥ 1, we define xp to be the word obtained from concatenating p copies of x. For example,
(01)3 = 010101. A word w is p-power if w = xp for some word x and some integer p.
Conventionally, 2-powers are usually called squares, and 3-powers are called cubes.

We say that a word x is a factor (also sometimes called a subword) of another word w if
x = w[i . . j] for some indices i, j, and we say that x is a circular factor of w if x is a factor of
wp for some integer p. Given integers n and k, a sequence in which every word in Σn

k appears
as a circular factor exactly once is called a de Bruijn word, named after Nicolaas Govert de
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Bruijn for his work on these sequences in [dB46]. For example, 00011101 is a de Bruijn word
for {0, 1}3. It has long been known that such a sequence exists for Σn

k , for every n, k ≥ 1.
In fact, there are exponentially many such sequences [Mar94].

There are many ways to generate a de Bruijn word for Σn
k . First, one can be obtained

by a greedy algorithm:

Algorithm A. Generating a de Bruijn word w for Σn
k

Input: Integers n, k ≥ 1
Set w[1 . . n] = 0n

Set i = n+ 1
while ∃α ∈ Σk such that w[i− n+ 1 . . i− 1]α is not a factor of w[1 . . i− 1] do

Set w[i] to be the largest such symbol α
Increment i

end
Discard last n− 1 symbols in w
return w

In other words, we start with 0n, and then successively append the largest symbol in the
alphabet that does not create a factor of length n that had appeared earlier in our sequence,
and stop if there is no such symbol. Then the resulting word, with the last n − 1 symbols
removed, is a de Bruijn word for Σn

k . This simple algorithm was discovered independently
by several mathematicians [Fre82], first by [Mar34].

Alternatively, one can also construct a de Bruijn word for Σn
k by doing the following.

Given a word w ∈ Σn
k , define

w(i) := w[i+ 1 . . n]x[1 . . i]

for all i = 1, . . . , n. We say that w(1), . . . , w(n) are the conjugates of w, and define a word
w ∈ Σn

k to be primitive if w 6= w(i) for all i ∈ {1, 2, . . . , n− 1}. Next, a word w ∈ Σn
k

is Lyndon if w is primitive, and is the lexicographically smallest among its conjugates.
The following result, due to Fredricksen and Maiorana [FM78], establishes a remarkable
connection between de Bruijn words and Lyndon words.

Theorem 1. Let w be the concatenation of all Lyndon words in Σ∗k of length dividing n, in
increasing lexicographic order. Then w is a de Bruijn word for Σn

k .

For instance, the six binary Lyndon words with length dividing four are, in increasing
lexicographic order, 0, 0001, 0011, 01, 0111 and 1. Thus, by Theorem 1,

w := 0000100110101111

is a de Bruijn word for {0, 1}4. An advantage of this approach is that, unlike the greedy
algorithm that requires exponential storage space during its execution, generating a de
Bruijn word by concatenating Lyndon words can be done in constant time and space per
bit [RSW92].

More recently, Moreno [Mor05] extended the notion of de Bruijn words to an arbitrary
dictionary D ⊆ Σn

k , and defined a de Bruijn word for D to be a sequence in which every word
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in D (and no other words in Σn
k) appears as a circular factor exactly once. For instance, if

we let D be the set of words in {0, 1}4 with at least two 1s, then the word 11101011001 is
a de Bruijn word for D. Yet further generalizations of de Bruijn words, such as universal
cycles, have also been studied in the literature (see, for instance, [CDG92] and [Joh09]).

This paper will be organized as follows: In the next section, we first work with Moreno’s
generalization, and show that de Bruijn words of the set of primitive words in Σn

k exist, for
all integers n, k ≥ 2. Among other results, we prove that a de Bruijn word for the set of
primitive words in Σn

k can be generated by either of the following procedures:

• Start with w = 0n−1, and iteratively append the largest symbol in Σk that does not
create a factor of length n that is not primitive or has already appeared in w. Stop
when the word cannot be further extended, and discard the last n− 1 symbols of w.

• Concatenate all Lyndon words of length n, in increasing lexicographic order.

Some of the tools we use, such as presenting greedy algorithms under the framework
for preference functions and making connections between de Bruijn and Lyndon graphs
of dictionaries, could help with the analysis and construction of de Bruijn words of other
dictionaries. In Section 3, we look into a different generalization of de Bruijn words, and
show that the shortest sequence that contains all p-powers of length pn as factors has length
between pkn and roughly (p+ 1

k
)kn, for all integers p ≥ 1. We provide an algorithmic proof

for the upper bound, and discuss some computational results.

2 de Bruijn Words for Primitive Words

First of all, it is apparent de Bruijn words do not exist for some dictionaries D ⊆ Σn
k . For

instance, consider the dictionary D := {0000, 0001, 0011, 0111}. There is clearly no binary
word of length 4 that contains all four words in D as circular factors. Moreno [Mor05]
observed that the dictionaries for which de Bruijn words exist can be characterized by looking
at their corresponding de Bruijn graphs. Given D ⊆ Σn

k , its de Bruijn graph GD is defined
as follows:

• Its vertices V (GD) is the set of words in Σn−1
k that are factors of some word in D;

• Its arcs E(GD) is the set of ordered pairs {u, v} where u, v ∈ Σn−1
k and there exists a

word in D whose prefix is u and suffix is v.

For example, Figure 1 illustrates GD where D is the set of words in {0, 1}4 with at least
two 1s. Each arc {u, v} (which will sometimes be abbreviated as uv from here on to reduce
cluttering) is labelled by the unique word in D of which u is a prefix and v is a suffix.
Alternatively, GD can be defined as the de Bruijn graph of Σn

k , with arcs corresponding to
words in Σn

k \ D removed, and then isolated vertices deleted.
Given a directed graph G, an Eulerian cycle in G is a closed walk that uses every arc in G

exactly once. An important property of de Bruijn graphs is that, for any dictionary D ⊆ Σn
k ,

there is a one-to-one correspondence between de Bruijn words of D and the Eulerian cycles
of GD [Mor05]. For instance, an Eulerian cycle in the graph in Figure 1 can be obtained
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Figure 1: The de Bruijn graph for the set of words in {0, 1}4 with at least two 1s.

from starting at the vertex 001, and going through arcs 0011, 0111, 1111,1110, 1101, 1010,
0101, 1011, 0110, 1100, and 1001 in that order. Then by concatenating the last symbol
in each of these arcs, we obtain 11101011001, the aforementioned de Bruijn word for this
dictionary. Likewise, given any de Bruijn word, one can construct from its circular factors a
corresponding Eulerian cycle in the de Bruijn graph.

Next, we show that there is a de Bruijn word for the set of primitive words in Σn
k , for

every n, k ≥ 2. In fact, we will provide three rather different proofs, as they each make use
of different tools and connects with different existing results.

2.1 Using Greedy Algorithms

Before we focus on the set of primitive words, we look into a general framework that will
allow us to analyze the viability of generating de Bruijn words using greedy algorithms for
arbitrary dictionaries. Given a dictionary D ⊆ Σn

k , Moreno [Mor05] showed that a necessary
condition for D to have a de Bruijn word is the following:

| {α ∈ Σk : αu ∈ D} | = | {α ∈ Σk : uα ∈ D} |, ∀u ∈ Σn−1
k . (1)

That is, for any word u of length n− 1, the number of symbols that can left-extend u to
a word in D is equal to the number of symbols that can right-extend u to a word in D. This
is equivalent to the condition that the in-degree is equal to the out-degree for every vertex
in the graph GD.

Next, given a dictionary D, we say that a word u ∈ Σ∗k is D-nonrepeating if it satisfies
all of the following conditions:

1. |u| ≥ n− 1, and u[1 . . n− 1] is a factor of some word in D;

2. u does not contain any word in Σn
k \ D as a factor;

3. u does not contain any word in D as a factor more than once.

Note that if x ∈ D, then x and x[1 . . n − 1] are both D-nonrepeating. Also, using the
same correspondence between de Bruijn words of D and Eulerian cycles in GD described
previously, a D-nonrepeating word translates to a walk in GD in which no arc is used more
than once. As we will see subsequently, these D-nonrepeating words will serve as eligible
starting points of constructing de Bruijn words for D.
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Next, let P be a preference function that maps each word in Σn−1
k to an ordered set that

contains each symbol in Σk exactly once. We then define fmax(u) to be the word generated
by the following algorithm

Algorithm B. Generating fmax(u)

Input: Dictionary D ⊆ Σn
k , preference function P, D-nonrepeating word u

Set fmax(u)[1 . . |u|] = u
Set i = |u|+ 1
while ∃α ∈ Σk such that fmax(u)[i− n+ 1 . . i− 1]α ∈ D and is not a factor of
fmax(u)[1 . . i− 1] do

Set fmax(u)[i] to be the first such symbol in the set P(fmax(u)[i− n+ 1 . . i− 1])
Increment i

end
return fmax(u)

For example, let D = {0, 1}4, u = 0000, and P be the preference function where

P(w) = {1, 0} , ∀w ∈ {0, 1}3 .

In other words, when choosing a symbol to append to fmax(u), we always try the symbol
1 before 0. In this case, fmax(u) = 0000111101100101000, and removing the last 3 symbols
result in a de Bruijn word for D. More generally, when D = Σn

k , u = 0n and

P(w) = {k − 1, k − 2, . . . , 1, 0} , ∀w ∈ Σn−1
k ,

the construction of fmax(u) (with the last n−1 symbols removed) coincides with Algorithm A,
the aforementioned greedy algorithm that generates a de Bruijn word for Σn

k . Here, the
preference function P can be interpreted as always attempting to pick the largest eligible
symbol to extend fmax(u). While the framework with preference functions may seem a little
clumsy at this point, it allows the possibility of having the preference of symbols vary upon
the current suffix of fmax(u), which we shall explore later in this section.

We now characterize situations where, given dictionary D, D-nonrepeating word u, and
preference function P , fmax(u) is in fact a de Bruijn word for D (after having its last n− 1
symbols removed). Consider the following closely related sequence:

Algorithm C. Generating fmin(u)

Input: Dictionary D ⊆ Σn
k , preference function P, D-nonrepeating word u

Set fmin(u)[1 . . |u|] = u
Set i = |u|+ 1
while ∃α ∈ Σk such that fmin(u)[i− n+ 1 . . i− 1]α ∈ D and is not a factor of
fmin(u)[1 . . i− 1] do

Set fmin(u)[i] to be the last such symbol in the set P(fmin(u)[i− n+ 1 . . i− 1])
Increment i

end
return fmin(u)
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That is, fmin(u) is constructed in a similar fashion as fmax(u), except that we iteratively
append the least preferred symbol among all eligible ones, instead of the most preferred.
Somewhat surprisingly, the words obtained from being greedy and “anti-greedy” can be
related as follows.

Theorem 2. Suppose we are given a dictionary D ⊆ Σn
k that satisfies (1), u ∈ Σ∗k that

is D-nonrepeating, and preference function P. If u[1 . . n − 1] is a factor of fmin(w) for all
w ∈ Σn−1

k that is a factor of some word in D, then fmax(u) contains every word in D as
factor exactly once. Moreover, the word obtained from fmax(u) by discarding the last n − 1
symbols is a de Bruijn word for D.

Proof. By construction (and the fact that u is D-nonrepeating), every factor of fmax(u) of
length n is in D, and no such factors appear twice. Therefore, it suffices to show that every
word in D does appear as a factor in fmax(u).

First, observe that fmax(u) must end with u[1 . . n− 1]. Otherwise, let x be the suffix of
fmax(u) of length n−1, and suppose x appears q times in fmax(u) as a factor. The construction
of fmax(u) terminates at x implies that | {β : xβ ∈ D} | = q − 1. However, since fmax(u)
starts with u[1 . . n− 1] which by assumption is not equal to x, we have | {β : βx ∈ D} | ≥ q,
contradicting the assumption that D satisfies (1).

Next, suppose for a contradiction that there exists α1 ∈ Σk, y ∈ Σn−1
k such that α1y ∈ D

but is not a factor of fmax(u). Since | {β : βy ∈ D} | = | {β : yβ ∈ D} | and

| {β : βy is a factor of fmax(u)} | = | {β : yβ is a factor of fmax(u)} |,

there exists α2 ∈ Σk such that yα2 ∈ D but is not a factor of fmax(u). In particular, since
the algorithm always chooses the most preferred symbol to extend fmax(u), we may assume
that α2 is the last symbol in the ordered set P(y) where yα2 is in D.

Applying the same reasoning on y[2 . . n− 1]α2, we conclude that if we let α3 be the least
preferred symbol in P(y[2 . . n−1]α2) such that y[2 . . n−1]α2α3 is in D, then y[2 . . n−1]α2α3

does not appear in fmax(u).
Keep proceeding in this manner, and we conclude that any factor of length n in fmin(α1y)

does not appear in fmax(u). By the same argument we used above to show that fmax(u)
must have u[1 . . n − 1] as its prefix and suffix, we may conclude that fmin(α1y) has both
α1y[1 . . n − 1] as prefix and suffix. Since fmin(α1y) contains u[1 . . n − 1] as a factor by
assumption, this implies that there exists symbol β where u[1 . . n− 1]β is both in D and a
factor of fmin(α1y), and thus u[1 . . n − 1]β does not appear in fmax(u). However, since we
have shown above that fmax(u) must end with u[1 . . n − 1], it then must contain all words
in D with prefix u[1 . . n − 1], and thus we obtain a contradiction. Therefore, fmax(u) must
contain every word in D as a factor exactly once. Finally, since fmax(u) both starts and
ends with u[1 . . n− 1], a de Bruijn word for D can be obtained by discarding the last n− 1
symbols of fmax(u).

We remark that the converse of Theorem 2 is not true. For an example, let D = {0, 1}4
and P(w) = {1, 0} for all w ∈ {0, 1}3, then

fmax(0011) = 0011110110010100001,
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and removing the last 3 symbols result in a de Bruijn word for {0, 1}4. However, we see that

fmin(000) = 00001000,

which does not contain 0011. Hence, while fmin(w) contains u for every w ∈ Σn−1
k is a

sufficient condition for fmax(u) to contain a de Bruijn word for D, it is not necessary.
Next, we apply Theorem 2 to show that the simple greedy algorithm that generates a

de Bruijn word for Σn
k can be adapted to generate a de Bruijn word for the set of primitive

words. We first need the following.

Lemma 3. Let D be the set of primitive words in Σn
k . Then D satisfies (1).

Proof. For any u ∈ Σn−1
k , α ∈ Σk, if αu is not primitive, then it can be written as (αx)p for

some word x and integer p ≥ 2. But then uα = (xα)p is not primitive either. Thus, we see
that for every u ∈ Σn−1

k , αu is primitive if and only if uα is primitive.
Therefore, the sets on either side of the equality in (1) are identical for every u ∈ Σn−1

k ,
so it is apparent that they have the same size.

We will also need the following property of primitive words:

Lemma 4. For every u ∈ Σn−1
k and distinct symbols α, β ∈ Σk, if uα is not primitive, then

every factor of uβn−1 of length n is primitive.

Proof. To obtain a contradiction, suppose that uα is not primitive, and that there exists
integer ` ≤ n − 1 such that u[` . . n − 1]β` is also not primitive. Then there exist words
x, y and integers p, q ≥ 2 such that uα = xp and β`−1u[` . . n − 1]β = yq (the latter is due
to β`−1u[` . . n − 1]β being a conjugate of u[` . . n − 1]β`). Notice that |y| > `, or otherwise
β`−1u[` . . n− 1]β = yq implies y = β|y|, and consequently u = βn−1, which would imply that
uα is primitive. Thus, we obtain that

u[s|x|] = α, ∀s ∈ {1, . . . , p− 1} , (2)

u[t|y|+ r] = β, ∀t ∈ {1, . . . , q − 1} , r ∈ {0, . . . , `− 1} . (3)

Define m to be the least common multiple of |x| and |y|. If m < n, then u[m] = α
by (2) and u[m] = β by (3), a contradiction. Thus, |x| and |y| are coprime, and so for
any fixed r ∈ {1, . . . , |y| − 1}, there exists s ∈ {1, . . . , |y| − 1} such that s|x| ≡ r (mod
|y|). Since u[s|x|] = α for all s ∈ {1, . . . , |y| − 1}, this implies that y = α|y|−1β. But then

uα =
(
α|y|−1β

)q−1
α|y| would be primitive, which is a contradiction.

We are finally ready to prove the following:

Theorem 5. Let D be the set of primitive words in Σn
k where n, k ≥ 2, and let P be the

preference function where

P(w) = {k − 1, k − 2, . . . , 1, 0} , ∀w ∈ Σn
k .

Then fmax(0
n−1) (minus the last n− 1 symbols) is a de Bruijn word for D.
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Proof. First, 0n−1 is obviously D-nonrepeating. Also, we have shown that the set of primitive
words satisfies (1). Thus, by Theorem 2, it suffices to show that fmin(w) contains 0n−1 for
all w ∈ Σn−1

k . By Lemma 4, we see that fmin(w) either has prefix w0` that contains a factor
of 0n−1, or w0`1n−10n−1 for some ` ≥ 0. In either case, fmin(w) contains 0n−1, and our claim
follows.

Thus, we have shown that starting with 0n−1 and iteratively appending the largest pos-
sible symbol that does not create a factor of length n that has already appeared or is not
primitive will result in a de Bruijn word for the set of primitive words. it is not hard to see
that the ingredients in the above arguments can be extended to show the following slightly
stronger result:

Theorem 6. let D be the set of primitive words in Σn
k , where n, k ≥ 2. Let P be the

preference function such that

P(w) = {α1, α2, . . . , αk−1} , ∀w ∈ Σn
k ,

where {α1, . . . , αk−1} is any fixed ordering of the alphabet Σk. Then fmax ((αk−1)
n−1) (minus

the last n− 1 symbols) is a de Bruijn word for D.

In particular, this implies that the “prefer minimum” algorithm (start with n− 1 copies
of the largest symbol, iteratively extend sequence by writing down the smallest symbol that
does not create a repeat or non-primitive factor of length n) also generates a de Bruijn word.

We next look into a case where the preference function P varies upon w ∈ Σn−1
k . First,

Alhakim [Alh10] showed the following interesting result for binary sequences, which we
paraphrase here using preference functions:

Theorem 7. Let D = {0, 1}n, and P be the preference function such that

P(w) =

{
{1, 0} if w ∈ {0, 1}n−1 ends with a 0;

{0, 1} if w ∈ {0, 1}n−1 ends with a 1.

Then fmax(0
n), with the last n− 1 symbols removed and then the symbol 1 appended, is a de

Bruijn word for {0, 1}n.

Alhakim named the construction of this sequence the “prefer opposite algorithm” — at
each iteration, it prefers to extend the sequence by adding the symbol that is different from
the current last symbol in the sequence. For an example, when n = 4, we obtain

fmax(0000) = 000010100110111000.

Then we remove the last three 0’s and add a 1, and obtain 0000101001101111, which is a de
Bruijn word for {0, 1}4.

We now apply Theorem 2 again to show that a de Bruijn word for the set of primitive
words can be obtained in this “prefer opposite” manner as well.

Theorem 8. Let D be the set of primitive words in {0, 1}n, and define the preference function
P such that

P(w) =

{
{1, 0} if w ∈ {0, 1}n−1 ends with a 0;

{0, 1} if w ∈ {0, 1}n−1 ends with a 1.

Then fmax(0
n−1), with the last n− 1 symbols removed, is a de Bruijn word for D.
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Proof. Again, 0n−1 is D-nonrepeating, and the set of primitive words satisfies (1). Next,
consider fmin(w), which intuitively is the word obtained from iteratively extending w with
primitive factors in a “prefer same” manner. It only remains to show that fmin(w) contains
0n−1 for all w ∈ {0, 1}n−1. Let ` ≥ n be the smallest integer such that fmin(w)[`] 6= fmin(w)[`+
1]. Such an ` must exist, as the algorithm would not produce a non-primitive factor of length
n, and thus would not append the same symbol n consecutive times.

Next, fmin(w)[`] 6= fmin(w)[` + 1] means that setting fmin(w)[` + 1] = fmin(w)[`] would
have created a non-primitive factor (as the construction of fmin(w) “prefers same”). Thus,
by Lemma 4, fmin(w)[` + 1 . . ` + n] = (fmin(w)[` + 1])n−1. Now if fmin(w)[`] = 1, then we
have our factor of 0n−1 in fmin(w). Otherwise, if 0n−1 had not shown up earlier in fmin(w)
already, fmin(w)[`+n] would be followed by a string of n− 1 0’s (by Lemma 4 again). Thus,
we see that fmin(w) contains 0n−1 in any case, and the result follows from Theorem 2.

Thus, we obtain another way of generating a de Bruijn word for the set of primitive
words in {0, 1}n using a greedy algorithm. Furthermore, we see that the use of preference
functions and Theorem 2 give us a template to streamline the analysis of the feasibility of
using greedy algorithms to generate de Bruijn words for arbitrary dictionaries.

2.2 Concatenation of Lyndon words

Recall that a de Bruijn word for Σn
k can also be obtained from concatenating all Lyndon

words of length dividing n in increasing lexicographic order. Next, we show that a de Bruijn
word for the primitive words can be produced by a similar concatenation.

Theorem 9. Let w be the concatenation of all Lyndon words in Σn
k in increasing lexicographic

order. Then w is a de Bruijn word for the set of primitive words in Σn
k .

Theorem 9 was first conjectured by Michael Domaratzki, who has a proof for the case
k = 2 (personal communication, July 2013). Also, throughout this section, we will let k′

denote the symbol k − 1 to reduce cluttering.
Before we prove Theorem 9, we need the following result due to Cummings, who previ-

ously published a proof for the case k = 2 in [Cum88]. It is also implied by Duval’s [Duv88]
algorithm of generating Lyndon words.

Lemma 10. Let x ∈ Σn
k be a Lyndon word. Define ` := max {i : x[i] 6= k′}. If ` ≥ 2, then

y := x[1 . . `− 1](k′)n−`+1 is also a Lyndon word.

That is, if we replace the last non-k′ letter in a Lyndon word by k′, the resulting word is
also Lyndon (unless it is (k′)n). We are now ready to prove Theorem 9.

Proof of Theorem 9. If w is the concatenation of all Lyndon words of length n, then w has
length n times the number of Lyndon words in Σn

k . Thus, the number of circular factors of w
of length n is equal to the number of primitive words in Σn

k , and it suffices to show that each
primitive word appears at least once in w (as that would imply that each primitive word
appears exactly once). We do so by showing that given any Lyndon word x, its conjugate
x(i) = x[i+ 1 . . n]x[1 . . i] appears in w as a circular factor, for all i ∈ {1, . . . , n}.

9



010111

011111

000111

001111

001101

000101

001011

000001

000011

Figure 2: The Lyndon graph L6,2

First, obviously x(n) = x appears in w. Next, we write x as x[1 . . `](k′)n−` such that
x[`] 6= k′. If ` ≥ 2, then y := x[1 . . ` − 1](k′)n−`+1 is also Lyndon by Lemma 10. Thus, the
Lyndon word that immediately follows x in w is sandwiched between x and y, and has prefix
x[1 . . `− 1]. Therefore, w contains the factor x · x[1 . . `− 1], which contains the conjugates
x(1), x(2), . . . , x(`−1).

Next, we locate the factor x(i) in w, for all i ∈ {`, . . . , n− 1}. Note that x(i) =
(k′)i−`+1x[1 . . `](k′)n−i−1. Let y be the smallest Lyndon word that has prefix x[1 . . `](k′)n−i−1

(one must exist — x is one), and z be the Lyndon word that immediately precedes y in w. By
the choice of y, z[1 . . n+ `− i−1] < y[1 . . n+ `− i−1]. Then by Lemma 10, the last i− `+1
symbols of z must all be k′, and zy contains the factor (k′)i−`+1x[1 . . `](k′)n−i−1 = x(i).

The remaining case when there is no Lyndon word preceding y in w implies x[1 . . `](k′)n−i−1

is the word of all 0s, and so i = n− 1, and x(i) = (k′)n−`0`. Since the first and last Lyndon
words in w are 0n−11 and (k′−1)k′n−1 respectively, w contains the circular factor (k′)n−10n−1,
which must contain x(i). Hence, we are finished.

As with the case of generating a de Bruijn word for Σn
k , concatenating Lyndon words

is much more computationally efficient in generating a de Bruijn word for primitive words
than using greedy algorithms, whose execution require exponential storage space.

2.3 Relating de Bruijn Graphs and Lyndon Graphs

Next, we detail yet another argument that shows the existence of de Bruijn words for
primitive words. Unlike the two algorithmic proofs provided above, this argument is non-
constructive, and makes use of connections between de Bruijn graphs and Lyndon graphs.

Given integers n, k ≥ 2, we let Pn,k denote the de Bruijn graph of the set of primitive
words in Σn

k . Also, let Ln,k denote the Lyndon graph of Σn
k , which has a vertex for each

Lyndon word in Σn
k , and joins two Lyndon words by an edge if they differ in exactly one

position. For example, Figure 2 illustrates the graph L6,2.
Notice that L6,2 only has one component. In fact, this is shown by Cummings to be true

in general [Cum88].

Lemma 11. Ln,k is connected for all n, k ≥ 2.

Proof. Given any pair of Lyndon words x, y ∈ Σn
k , Lemma 10 shows that there is a path

from x to x[1](k′)n−1 in Ln,k. Similarly, there is also a path between y and y[1](k′)n−1. Since
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x[1](k′)n−1 is adjacent to y[1](k′)n−1, we see that there is a path between x and y in Ln,k.
Thus, Ln,k is connected.

On the surface, Pn,k and Ln,k appear to have very little in common. First of all, the
former is directed and the latter is not. Also, their vertices are represented by words of
different lengths, with adjacency rules that are quite different. However, it turns out that
they can be related through a series of basic graph operations.

Given a directed graph G, its line graph L(G) is obtained by defining a vertex for each
arc in G, and joining u and v in L(G) if there is a vertex in G that is incident with their
corresponding arcs. Note that while G is directed, L(G) is undirected. Next, let G be an
undirected graph and S ⊆ V (G). Then contracting S in G yields the graph obtained from
replacing the vertices in S by a single vertex vS, and joining it to vertices in V (G) \ S that
was adjacent to some vertex in S.

Then we have the following:

Proposition 12. Let Hn,k be the graph obtained from starting with L(Pn,k), and successively
contracting

{
x(i) : i ∈ {1, . . . , n}

}
for all Lyndon words x ∈ Σn

k . Then Ln,k is a subgraph of
Hn,k.

Proof. First, if during the contraction process, we label the vertex obtained from contracting{
x(i) : i ∈ {1, . . . , n}

}
by x for all Lyndon word x ∈ Σn

k , then it is easy to see that Hn,k and
Ln,k have the same vertex set. Thus, it suffices to show that two Lyndon words are joined
by an edge in Hn,k if they differ by exactly one position.

Let uαv and uβv be two Lyndon words in Σn
k , where u, v ∈ Σ∗k and α, β ∈ Σk. Observe

that αvu and vuβ are both arcs in Pn,k (since they are both primitive), and share the vertex
vu. Hence, αvu and vuβ are joined by an edge in L(Pn,k). Since αvu and vuβ are conjugates
of uαv and uβv respectively, we see that uαv and uβv are joined by an edge in Hn,k.

Figure 3 illustrates the transformation from P4,2 to H4,2, which turns out to be exactly
the graph L4,2. In general, while Hn,k and Ln,k have the same vertex set, the former can
have more edges. For instance, while 000011 and 001101 differ by three positions, they are
adjacent in H6,2, since the arcs 000110 and 001101 share the vertex 00110 in P6,2.

Now we assemble the results in this section to provide yet another proof that a de Bruijn
word for the primitive words exists, and we do that by showing that Pn,k has an Eulerian
cycle.

First, Lemma 3 implies that every vertex in Pn,k has the same in-degree and out-degree.
Thus, it suffices to show that the underlying undirected graph of Pn,k is connected.

To obtain a contradiction, suppose there are vertices u, v that belong to different com-
ponents in Pn,k. If we let x and y be arcs that are incident with u, v respectively, then x
and y are in different components in L(Pn,k). Next, observe that the n conjugates of any
primitive word form a directed cycle of length n in Pn,k. Thus, the n corresponding vertices
cannot be spread across multiple components in L(Pn,k), and hence Hn,k cannot have fewer
components than L(Pn,k).

However, Ln,k is shown to be connected, is contained in Hn,k, and they have the same
vertex set. Therefore, Hn,k only has one component, which implies that L(Pn,k) is connected,
a contradiction. Hence, we conclude that Pn,k has an Eulerian cycle, and there is a de Bruijn
word for the set of primitive words in Σn

k .

11
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Figure 3: Transforming P4,2 to H4,2

In fact, if we extract the minimal ingredients we used the above argument, we obtain the
following slightly stronger statement:

Corollary 13. Let D ⊆ Σn
k be a dictionary that satisfies (1), and has the property that for

every pair of Lyndon words uαv, uβv ∈ Σn
k where u, v ∈ Σ∗k and α, β ∈ Σk,

D ∩ {αvu, vuα} 6= ∅ and D ∩ {βvu, vuβ} 6= ∅.

Then there is a de Bruijn word for D.

Proof. Consider the de Bruijn graph GD, and let H be the graph obtained from contracting
all the conjugate classes of the line graph of GD. Notice that the Lyndon words uαv, uβv
differ by exactly one bit, and thus are adjacent in Ln,k. Now if D ∩ {αvu, vuα} 6= ∅ and
D∩{βvu, vuβ} 6= ∅, that means D contains a conjugate of uαv and a conjugate of uβv such
that those two edges are both incident with the vertex vu in GD. As a result, uαv and uβv
are joined by an edge in H, and thus H contains Ln,k as a subgraph. This implies that H is
connected, and consequently the underlying undirected graph of GD is connected. Together
with the fact that D satisfies (1), we conclude that D has a de Bruijn word.

It would be interesting to know if any other properties of primitive words (or other families
of words) and Lyndon words can be uncovered by this relation between their corresponding
graphs. Establishing a tighter connection between these families of graphs (e.g. finding
a transformation on Pn,k that yields exactly Ln,k) could also lead to new and interesting
findings.
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3 Short sequences containing powers

While an arbitrary dictionary D may not have a de Bruijn word, there might be words of
length not much larger than |D| that contains all words in D as circular factors. For instance,
while we mentioned in the previous section that D := {0000, 0001, 0011, 0111} does not have
a de Bruijn word, there are many sequences that contain all fours words in D as factors, with
0000111 being the shortest such sequence. Thus, in this regard, we can consider the word
0000111 as the closest thing to a de Bruijn word for D, as there are no shorter sequences
that contain all words in D.

This motivates the following question: Given an arbitrary dictionary D ⊆ Σn
k , what is

the shortest word that contains all words in D as circular factors? Such a sequence can be
seen as a generalization of de Bruijn words, since if a dictionary D has a de Bruijn word, that
word must also be the shortest possible sequence that contains all words in D as circular
factors.

In this section, we tackle the above question for a particular family of dictionaries, and try
to find the shortest sequence that contains all p-powers in Σpn

k as circular factors. For p = 1, it
is obvious that there is a de Bruijn word for all p-powers (it would just be a de Bruijn word for
Σn
k). However, this does not apply for any p > 1. For instance, D = {0000, 0101, 1010, 1111}

are the set of all squares in {0, 1}4, and the shortest sequence that contains all four words
as circular factors is w = 000010101111, which has length 12. More generally, if we let D to
be the set of p-powers in Σpn

k , then GD has as many components as the number of conjugacy
classes in Σn

k . In fact, we shall soon see that any sequence that contains all kn p-powers in
Σpn
k must contain at least (p− 1)kn factors of length pn that are not p-powers.

Define an equivalence relation on Σn
k , where u ∼ v if and only if they are conjugates

of each other, and let C(n, k) denote the number of conjugacy classes in Σn
k . It is well

known that C(n, k) =
∑

d≥1:d|n
φ(d)
n
k

n
d , where φ(d) is Euler’s totient function — the number

of integers between 1 and d that are coprime with d. Note that C(n, k) ≥ kn

n
for all n, k.

Then we have the following:

Proposition 14. Suppose w ∈ Σ∗k contains every p-power in Σpn
k as factors. Then |w| ≥

kn + (p− 1)nC(n, k) ≥ pkn.

Proof. Given x, y ∈ Σn
k , observe that if x 6∼ y, then any word that contains both xp and yp

as factors has length at least 2pn − n + 1. Therefore, every time two consecutive p-powers
in w belong to different conjugacy classes, there are at least (p− 1)n factors of length pn in
w in between that are not p-powers. Since there are C(n, k) conjugacy classes in Σn

k , we see
that w contains at least (p− 1)n(C(n, k)− 1) factors of length pn that are not p-powers.

Since w must also contain at least kn factors that are p-powers, there are a total of at
least kn + (p− 1)n(C(n, k)− 1)) factors of length pn in w. Hence

|w| ≥ kn + (p− 1)n(C(n, k)− 1) + pn− 1 ≥ kn + (p− 1)nC(n, k) ≥ pkn,

and our claim follows.

Next, we show that there is a word w of length ≈ (p + 1
k
)kn over Σk that contains all

p-powers of length pn. Given u ∈ Σn
k , define

δ(u) :=
min

{
i ≥ 1 : u(i) = u

}
n

.
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Equivalently, δ(u) is the reciprocal of max {p ≥ 1 : u is a p-power}. Note that δ(u) = 1 if
and only if u is primitive, and that up+δ(u)−(1/n) contains all p-powers of all conjugates of u
as factors exactly once.

Next, we say that a word s ∈ Σ∗k is a conjugate cover of Σn
k if for every u ∈ Σn

k , s contains
some circular factor of length n − 1 in u. Conjugate covers exist for all n, k. For instance,
if we take t to be a de Bruijn word for Σn−1

k , then s := t · t[1 . . n − 2] is a conjugate cover,
since it contains all words in Σn−1

k as factors. We then construct a word w that contains all
p-powers in Σpn

k by the following algorithm:

Algorithm D. Generating a sequence w that contains all p-powers in Σpn
k

Input: Integers n, k, p where n, k ≥ 2, p ≥ 1, and s a conjugate cover of Σn
k

Set w = ε (the empty string)
Set L = Σn

k

for j = 1, . . . , |s| − n+ 2 do
for α = 0, 1, . . . , k − 1 do

Set u = s[j . . j + n− 2]α
if u ∈ L then

Accept α and append up+δ(u)−1 to the end of w
Remove all conjugates of u from L

else
Reject α and do not append anything

end

end
Append s[j] to w

end
Append s[|s| − n+ 3 . . |s|] to w
return w

For example, consider the case n = k = 3 and p = 2. The word s := 0221201100 is a
conjugate cover of {0, 1, 2}3. In this case, Algorithm D would execute as follows:

j s[j . . j + 1] Accepted α’s Append to w Removed from L
1 02 0, 1, 2 0200200210210220220 Conjugates of 020, 021, 022
2 22 1, 2 22122122222 Conjugates of 221, 222
3 21 1 2112112 Conjugates of 211
4 12 0 1201201 Conjugates of 120
5 20 None 2 None
6 01 0, 1 0100100110110 Conjugates of 010, 011
7 11 1 11111 111
8 10 None 1 None
9 00 0 00000 000

The algorithm finally appends 0 (the last symbol of s) to w, and outputs the word

w = 0200200210210220220 22122122222 2112112 1201201 2

0100100110110 11111 1 00000 0,
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which contains all squares of length 6 over {0, 1, 2}. Next, we show that the word generated
by Algorithm D is not “too much” longer than the lower bound shown in Proposition 14.

Theorem 15. Let w be the word constructed by Algorithm D. Then w contains xp as a
factor for all x ∈ Σn

k . Moreover, |w| = kn + (p− 1)nC(n, k) + |s|.

Proof. Recall that, given x ∈ Σn
k , x(i) = x[i+ 1 . . n]x[1 . . i]. We first prove that each p-power

appears in w at least once by showing that for every x ∈ Σn
k , there exists i ∈ {1, . . . , n} such

that w contains (x(i))p+δ(x)−(1/n) as a factor.
Let j be the smallest index such that s[j . . j + n− 2] is a prefix of some conjugate of x,

say x(i). Since s is a conjugate cover, such an index j must exist. Then we know that the
algorithm would accept α = x(i)[n] at step j, and (x(i))p−1+δ(x) is appended to w.

If at step j, some symbol larger than α is accepted, then we know the block s[j . . j+n−
2] = x(i)[1 . . n − 1] immediately follows, giving us the desired power of x(i). Otherwise, we
know that s[j] gets added to w at the end of step j.

Then, if any symbol is accepted in step j + 1, then s[j + 1 . . j + n − 1] is added to w,
and we get our desired power of x(i). Otherwise, we just add s[j + 1] at the end of step
j + 1. Proceeding in this manner, we see that the algorithm always adds s[j . . j + n − 2]
immediately after adding (x(i))p−1+δ(x) at step j. Since this holds for all x ∈ Σn

k , we see that
w contains all p-powers in Σpn

k .
Next, we compute |w|. We have already found kn factors of length pn that are p-powers.

To count the other factors in w, we need to observe that, after accepting α1 at step j, if
the next symbol accepted by the algorithm is α2 during step j + `, then there are exactly
(p− 1)n+ ` factors of length pn in w between the last p-power in (s[j . . j+n− 2]α1)

p+δ and
the first p-power in (s[j+ ` . . j+n+ `− 2]α2)

p+δ. Note that there could be p-powers among
these blocks (e.g. when ` = 1 and α2 = s[j + n− 1]), but we nonetheless count them under
the “other factors” category. Also, if the last symbol accepted by Algorithm D is α at step
|s| − n + 2 − `, then there are ` factors of length pn in w after the last p-power in up+δ(u),
where u = s[|s| − n+ 2− ` . . |s| − `]α.

Since each symbol accepted by Algorithm D corresponds to a unique conjugacy class in
Σn
k , we see that a total of C(n, k) symbols are accepted throughout the algorithm. Therefore,

w contains exactly (p− 1)n(C(n, k)− 1) + |s| − n+ 1 of these “other factors” of length pn.
Thus,

|w| = kn + (p− 1)n(C(n, k)− 1) + (|s| − n+ 1) + pn− 1

= kn + (p− 1)nC(n, k) + |s|,

and we are finished.

As mentioned before, we can always construct a conjugate cover out of a de Bruijn word
for Σn−1

k . In fact, we could do slightly better than that when n− 1 is not prime:

Corollary 16. Suppose n, k ≥ 2, and let D be the set of primitive words in Σn−1
k . Then

there exists a word w of length kn+(p−1)nC(n, k)+ |D|+n+k−2 that contains all p-powers
in Σpn

k as factors.
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Proof. By Theorem 15, it suffices to show that there is a conjugate cover of Σn
k of length

|D| + n + k − 2. Let t be the de Bruijn word for D constructed by concatenating Lyndon
words as described in Theorem 9. Then |t| = |D|, and t contains αn−2 as a factor at least
once for all α ∈ Σk. We obtain s by replacing an instance of αn−2 in t by αn−1 for each
α ∈ Σk, and then appending 0n−2 at the end. It is easy to see that |s| = |D| + n + k − 2,
and s contains all words in D, as well as αn−1 for all α ∈ Σk, as factors.

To show that s is a conjugate cover, it suffices to show that for all u ∈ Σn
k , either it has a

circular factor of length n− 1 that is primitive, or u = αn for some symbol α. Observe that,
for any i ∈ {1, . . . , n}, if neither u[i + 1 . . n]u[1 . . i − 1] nor u[i + 2 . . n]u[1 . . i] is primitive,
then u[i+ 1] = u[i] by Lemma 3 and 4. Applying this argument on all i yields that u = αn

for some α ∈ Σk, and it follows that s is a conjugate cover.

Since the number of primitive words in Σn−1
k is less than kn−1, we have now shown that

the shortest sequence that contains all p-powers in Σpn
k has length roughly between pkn and

(p + 1
k
)kn. For p = 1, we know the truth is much closer to the lower bound, as there is a

word of length kn + n− 1 that contains all words in Σn
k as factors — any de Bruijn word of

Σn
k with the first n− 1 symbols repeated at the end would do.

Computational evidence suggests that this seems to be the case for p = 2 as well. Suppose
we consider the special case of k = p = 2, and build a sequence that contains all squares in
{0, 1}2n by the following procedure:

Algorithm E. Constructing a word w that contains all squares of length 2n over {0, 1}
Input: Integer n ≥ 2
Set w = 02n

Set L = {0, 1}n
while L 6= ∅ do

Pick u ∈ L such that the prefix of u overlaps the most with the current suffix of w.
If there is a tie, pick the lexicographically smallest u. Append to w such that w
now has suffix u2+δ(u)−(1/n).
Remove all conjugates of u from L

end
return w

For any integer n, let g(n) be the length of the sequence obtained by Algorithm E, and

let f(n) := g(n)
2n+nC(n,2)

. Figure 4 illustrates the behaviour of f(n) for n ∈ {4, . . . , 25}.
By Corollary 16, the length of shortest word that contains all squares in {0, 1}2n is

bounded above by roughly 5
4

(2n + nC(n, 2)). However, we see that f(n) appears to approach
1 as n increases, and there seems to be room for improvement for the upper bound. Perhaps
constructing the shortest possible conjugate covers can improve the upper bound to, say,
kn + (p− 1)nC(n, k) +O(kn−1/n). Also, we remark that the lower bound in Proposition 14
also holds for fractional powers p (given a positive real number p where pn is an integer, we
can define xp := xbpcx[1 . . (p− bpc)n]). It would be interesting to know if “short” sequences
that contains all p-powers for a fractional p exist, and whether there are efficient algorithms
that generate short sequences that contains all p-powers in general.
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