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The Danish composer Per Nørg̊ard (born July 13 1932) defined the “infinity series” s =
(s(n))n≥0 by the rules s(0) = 0, s(2n) = −s(n) for n ≥ 1, and s(2n+ 1) = s(n) + 1 for n ≥ 0;
it figures prominently in many of his compositions. Here we give several new results about
this sequence: first, the set of binary representations of the positions of each note forms a
context-free language that is not regular; second, a complete characterization of exactly which
note pairs appear; third, consecutive occurrences of identical phrases are widely separated.
We also consider to what extent the infinity series is unique.
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1. Introduction

The Danish composer Per Nørg̊ard constructed an infinite sequence of integers, s =
(s(n))n≥0, which he called the Uendelighedsrækken or “infinity series,” using the rules

s(n) =


0, if n = 0;

−s(n/2), if n is even;

s(n−1
2 ) + 1, if n is odd.

(1)

The nth term of Nørg̊ard’s sequence is s(n); it specifies how far away the nth note is,
in half steps, from some fixed base note (such as G = 0). The first note is s(0) = 0.
A positive value of s(n) represents a note of higher pitch than the base note s(0), and
a negative number represents a note of lower pitch. Figure 1 gives the first 32 notes of
Nørg̊ard’s sequence starting at the note G.
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Figure 1. The first 32 notes of the infinity series starting on G.

The following table gives the first 16 terms of Nørg̊ard’s sequence, which may be
compared to Figure 1. It is sequence A004718 in the On-Line Encyclopedia of Integer
Sequences (Sloane 2016).

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
s(n) 0 1 −1 2 1 0 −2 3 −1 2 0 1 2 −1 −3 4 1 0 −2 3

Table 1. The first few terms of Nørg̊ard’s Uendelighedsrækken sequence.

Per Nørg̊ard’s music has often been described as “hierarchical,” and the mathematical
definition of Nørg̊ard’s sequence given above illustrates this self-similarity: by taking
every second note starting with the note 0, we get the original melody inverted (i.e.,
negated), and by taking every second note starting with note 1, we get the original
melody transposed up by one half step. Even more is true, as noted in (Mortensen
2003b):

Theorem 1.1 Every subsequence (s(2en + i))n≥0, for e ≥ 0 and 0 ≤ i < 2e, is either
the original sequence (s(n))n≥0 transposed, or the original sequence inverted and then
transposed.

Proof. We proceed by induction on e. The result is trivial for e = 0. Now assume it is
true for all e′ < e; we prove it for e ≥ 1. If i is even, then s(2en+ i) = s(2(2e−1n+ i/2)) =
−s(2e−1n+ i/2). If i is odd, then s(2en+ i) = s(2(2e−1n+ (i− 1)/2) + 1) = s(2e−1n+
(i− 1)/2). But by induction both subsequences (s(2e−1n+ i/2))n≥0 and (s(2e−1n+ (i−
1)/2))n≥0 are of the form (−s(n) + c)n≥0 or (s(n) + c)n≥0 for some constant c. Hence so
is (s(2en+ i))n≥0. �

The infinity series figures prominently in many of Nørg̊ard’s compositions, such as
Voyage into the Golden Screen (Nørg̊ard 1968) and Symphony No. 2 (Nørg̊ard 1970). In
the latter, 4096 notes of the infinity series appear. For analyses of the former piece, see
Hansen and Holten (1971); Rasmussen (1993); and Mehta (2011). For the latter piece, see
Bisgaard (1974-1975a); Bisgaard (1974-1975b); Christensen (1996). Below, in Figure 2,
we reproduce part of the score of Voyage into the Golden Screen, where the flute part
performs the first few notes of the infinity series.
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Figure 2. Excerpt from Voyage into the Golden Screen (from (Kullberg 1996)).

Figure 3 illustrates the first 128 values of Nørg̊ard’s sequence.

Figure 3. The first 128 values of Nørg̊ard’s sequence.

As Figure 3 shows, Nørg̊ard’s sequence does not grow very rapidly, a fact that we make
mathematically precise in Corollary 4.2.

Although the infinity series has received some study in the music literature (e.g., Chris-
tensen (1996); Kullberg (1996); Mehta (2011)), it turns out to have a rich structure that
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has received comparatively little attention from professional mathematicians. The single
exception seems to be the work of Bak (2002). We mention one of Bak’s more interesting
results: if we define η(X) =

∑
i≥0 s(i)X

i, the Nørg̊ard power series, then

η(X) = (X − 1)η(X2) +
X

1−X2
.

Most of the analyis of Nørg̊ard’s work has appeared, not surprisingly, in Danish pub-
lications: Mortensen (1992) was one of the first to study the sequence mathematically.
Mortensen also created a series of web pages Mortensen (2003c,a,b,d, 2005), in both
Danish and English, about Nørg̊ard’s work.

Unfortunately, not all the claims about Nørg̊ard’s sequence in the literature are correct.
For example, speaking about Nørg̊ard’s sequence modulo 2, Moore (1986) says,

The numerical infinity series employed by Noergaard does not seem to be related to the
types of convergent and divergent infinite series known in mathematics.

In fact, Nørg̊ard’s sequence modulo 2 is called the Thue-Morse sequence, and has been
studied explicitly since 1912 (e.g., Thue (1912); Berstel (1995)).

In this article we examine some novel mathematical aspects of the sequence, and in-
terpret them musically. One of our goals is to put the analysis of Nørg̊ard’s infinity series
on a more rigorous mathematical footing.

2. Notation and observations

We now fix some notation used throughout the paper. By (n)2 we mean the binary string,
having no leading zeros, representing n in base 2. Thus, for example, (43)2 = 101011.
Note that (0)2 is the empty string ε. If w is a binary string, possibly with leading zeros,
then by [w]2 we mean the integer represented by w. Thus, for example, [0101]2 = 5.

By a block we mean a finite list of consecutive terms of the sequence. When we interpret
the sequence musically, we call this a phrase. The block of length j beginning at position
i of Nørg̊ard’s sequence is denoted by s[i..i+ j − 1]. If x is a block, then by |x| we mean
the length of, or number of notes in, the block x. By xi, for an integer i, we mean the
block of length i|x| consisting of x repeated i times. We write CardS for the cardinality
of a set S.

We recall two basic facts about Nørg̊ard’s sequence, both of which follow immediately
from the defining recurrence.

Observation 2.1 If a number a occurs at an even position n = 2k, then 1 − a occurs
at position n = 2k + 1. If a number b occurs at an odd position n = 2k + 1, then 1 − b
occurs at position n = 2k.

Observation 2.2 Nørg̊ard’s sequence is the fixed point of the map g that sends each
integer a to the pair (−a, a + 1). Here g is extended in the usual way to finite lists and
infinite sequences.

3. Evaluating Nørg̊ard’s sequence

It is useful to have a formula to compute s(n) directly from (n)2, the base-2 expansion
of n. The result below can be compared with an essentially equivalent formulation by
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Mortensen (2003a).

Lemma 3.1 Let a1, a2, . . . , an and b1, b2, . . . , bn be integers with a1, a2, . . . , an ≥ 0 and
b1, b2, . . . , bn ≥ 1. If w = 1b10a1 · · · 1bn0an then

s([w]2) =
∑

1≤j≤n
(−1)aj+···+anbj .

Proof. We proceed by induction on n. The base case is n = 1. In this case w = 1b10a1 ,
so [w]2 = (2b1 − 1)2a1 . Then s([w]2) = s((2b1 − 1)2a1) = (−1)a1s(2b1 − 1) = (−1)a1b1, as
desired.

For the induction step, assume the result is true for n. Consider w′ =
1b10a1 · · · 1bn0an1bn+10an+1 . Then, applying the rules of the recursion, we have s([w′]2) =
(−1)an+1s([w′′2 ]), where w′′ = 1b10a1 · · · 1bn0an1bn+1 . Again applying the rules, we have
s([w′′]2) = bn+1 + s([w]2). Putting this all together, and using induction, we get

s([w′]2) = (−1)an+1(bn+1 + s([w2]))

or

s([w′]2) =
∑

1≤j≤n+1

(−1)aj+···+an+1bj ,

as desired. �

4. The growth rate of Nørg̊ard’s sequence

It is natural to ask, when is the first occurrence of a note k in the infinity series? As we
will see, the first occurrence is exponentially far out in |k|.

Proposition 4.1

(a) If k ≥ 0, the least n such that s(n) = k is n = 2k − 1;
(b) If k ≤ 0, the least n such that s(n) = k is n = 21−k − 2.

Proof. A very easy induction, which we omit, shows that s(2k − 1) = k for all k ≥ 0.
From this it immediately follows that s(2k+1 − 2) = −k for all k ≥ 0.

It remains to prove the following two claims simultaneously by induction on |k|:

(a′) If k ≥ 0, then s(n) = k implies n ≥ 2k − 1;
(b′) If k ≤ 0, then s(n) = k implies n ≥ 21−k − 2.

The reader can verify both claims for k = 0. Now assume both (a′) and (b′) hold for
0 < |k| < m; we prove them for k = m. Suppose s(m) = k and m is the least such index.

We first prove (a′). If m is even then s(m/2) = −k < 0. But then (b′) implies that
m/2 ≥ 2k+1 − 2. So m ≥ 2k+2 − 4 ≥ 2k − 1. If m is odd then s((m− 1)/2) = s(m)− 1 =
k − 1 ≥ 0. Then (a′) implies that (m− 1)/2 ≥ 2k−1 − 1, so m ≥ 2k − 1, as desired.

Next, we prove (b′). If m is odd then s((m − 1)/2) = s(m) − 1 = k − 1. Then s(m −
1) = −s((m − 1)/2) = 1 − k ≥ 1. So by (a′) we have m − 1 ≥ 21−k − 1. But then
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m ≥ 21−k ≥ 21−k − 2. If m is even then s(m/2) = −k. Since k < 0 we have −k > 0, and
so m/2 ≥ 2−k − 1 by (a′). Hence m ≥ 21−k − 2, as desired. �

As a corollary we get tight upper and lower bounds on the value of s(n).

Corollary 4.2 We have

1− log2(n+ 2) ≤ s(n) ≤ log2(n+ 1)

for all integers n ≥ 0, and both bounds are tight infinitely often.

Proof. The bounds clearly hold for n = 0, 1. Otherwise write 2r−1 < n ≤ 2r for some
r ≥ 1, so r−1 < log2(n) ≤ r. From Proposition 4.1 we have s(n) ≤ r−1 unless n = 2r−1.
Hence, if n 6= 2r − 1 we have s(n) ≤ r − 1 ≤ log2(n) ≤ log2(n + 1). On the other hand,
if n = 2r − 1, then s(n) = log2(n+ 1). This proves the upper bound.

For the lower bound, from Proposition 4.1 we have s(n) ≥ 2 − r unless n = 2r − 2.
Hence, if n 6= 2r − 2 we have s(n) ≥ 2− r ≥ 1− log2(n) ≥ 1− log2(n+ 2). On the other
hand, if n = 2r − 2, then s(n) = 1− log2(n+ 2). This proves the lower bound. �

5. Note positions

In the previous section we were concerned with the first appearance of a given note in
the infinity series. Now we turn to understanding the positions of all such notes.

Given any note a, we let s−1(a) denote the set of all natural numbers n such that
s(n) = a. For example, for a = 0, we have

s−1(0) = {0, 5, 10, 17, 20, 27, 34, 40, 45, 54, 65, 68, 75, 80, 85, 90, 99, 105, 108, . . .}.

It is then natural to wonder about the complexity of specifying these note positions.
The American linguist Noam Chomsky (1956) invented a famous hierarchy of distinc-

tions among formal languages. The two lowest levels of this hierarchy are the regular lan-
guages (those accepted by a finite-state machine) and the context-free languages (those
accepted by a finite-state machine with an auxiliary pushdown stack). Here we show that
the language of binary representations of s−1(a) is context-free, but not regular.

Theorem 5.1 For each integer a, the language La = (s−1(a))2 is context-free but not
regular.

Proof. It suffices to explain how La can be accepted by a pushdown automaton Ma. We
assume the reader is familiar with the basic notation and terminology as contained, for
example, in Hopcroft and Ullman (1979).

The first part of the construction is the same for all a.
We will design Ma such that, on input n in base 2 (starting from the most significant

digit), Ma ends up with |s(n)| counters on its stack, with the sign m := sgn(s(n)) stored
in the state. We also assume there is an initial stack symbol Z.

To do this, we use the recursion s(2n) = −s(n) and s(2n+ 1) = s(n) + 1. As we read
the bits of n,

• if the next digit read is 0, set m := −m;
• if the next digit read is 1, and m is 0 or +1, push a counter on the stack, and set
m := +1;
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• if the next digit read is 1, and m = −1, pop a counter from the stack and change
m to 0 if Z is now on the top of the stack.

The rest of Ma depends on a. From each state where m = sgn(a), we allow an ε-
transition to a state that attempts to pop off |a| counters from the stack and accepts if
and only if this succeeds, the stored sign is correct, and Z is on top of the stack. This
completes the sketch of our construction, and proves that La is context-free.

Next, we prove that La is not regular. Again, we assume the reader is familiar with
the Pumping Lemma for regular languages, as described in Hopcroft and Ullman (1979).
Consider L := La ∩ 1∗01∗. From Lemma 3.1, we know that if n = [1b01c]2, then
s(n) = c− b. It follows that

L = {1i01i+a : i ≥ 0 and i+ a ≥ 0}.

Let n be the Pumping Lemma constant and set N := n+ |a|. Choose z = 1N01N+a. Then
|z| ≥ n. Suppose z = uvw with |uv| ≤ n and |v| ≥ 1. Then uw = 1N−|v|01N+a 6∈ La,
since |v| ≥ 1. This contradiction proves that La is not regular. �

Interpreted musically, one might say that the positions of every individual note in the
infinity series are determined by a relatively simple program (specified by a pushdown
automaton), but not by the very simplest kind of program. There are indeed computable
regularities in these positions, but not finite-state regularities.

6. Counting occurrences of notes

Hansen and Holten (1971) briefly described the distribution of notes in the first 128
notes of the infinity series. However, they apparently did not notice that there is a
close relationship between the distribution of the first 2N notes of the infinity series and
the binomial coefficients in Pascal’s triangle. For example, for N = 7 the number of
occurrences of each note is given in Table 3; compare it to row 6 of Pascal’s triangle in
Table 2.

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1

Table 2. Rows 0 through 6 of Pascal’s triangle.

a −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7
ra(7) 1 1 6 6 15 15 20 20 15 15 6 6 1 1

Table 3. Distribution of the first 128 notes of Nørg̊ard’s sequence.

Here ra(N) = Card{i : 0 ≤ i < 2N and s(i) = a}, the number of occurrences of the
note a in the first 2N positions of Nørg̊ard’s sequence. The following theorem makes the
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relationship precise, in terms of the binomial coefficients(
n

t

)
=

n!

t!(n− t)!
.

Theorem 6.1 For all integers a and all N ≥ 1 we have

ra(N) =

(
N − 1

b(N − a)/2c

)
.

Proof. We proceed by induction on N . The base case is N = 1, whence N − 1 = 0. Then(
0

b(N − a)/2c

)
=

{
1, if b(1− a)/2c = 0;

0, otherwise.

This is 1 if a ∈ {0, 1}, and 0 otherwise. But the first 2 notes of s are 0 and 1, so the
result holds.

Now assume the claim holds for N ′ < N ; we prove it for N . Now a value of a in
s[0..2N − 1] can occur in either an even or odd position. If it occurs in an even position,
then it arises from −a occurring in s[0..2N−1 − 1]. If it occurs in an odd position, then
it arises from a− 1 occurring in s[0..2N−1 − 1]. It follows that, for N ≥ 2, that

ra(N) = r−a(N − 1) + ra−1(N − 1).

Hence, using induction and the classical binomial coefficient identities(
M

i

)
=

(
M − 1

i

)
+

(
M − 1

i− 1

)
,

and (
M

i

)
=

(
M

M − i

)
,
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we have

ra(N) = r−a(N − 1) + ra−1(N − 1)

=

(
N − 2

b(N − 1 + a)/2c

)
+

(
N − 2

b(N − a)/2c

)

=


(

N−2
(N+a)/2−1

)
+
(

N−2
(N−a)/2

)
, if N ≡ a (mod 2);(

N−2
(N+a−1)/2

)
+
(

N−2
(N−a−1)/2

)
, if N 6≡ a (mod 2);

=


(

N−2
(N−2)−(N+a)/2+1

)
+
(

N−2
(N−a)/2

)
, if N ≡ a (mod 2);(

N−2
(N−2)−(N+a−1)/2

)
+
(

N−2
(N−a−1)/2

)
, if N 6≡ a (mod 2);

=


(

N−2
(N−a)/2−1

)
+
(

N−2
(N−a)/2

)
, if N ≡ a (mod 2);(

N−2
(N−a−1)/2−1

)
+
(

N−2
(N−a−1)/2

)
, if N 6≡ a (mod 2);

=


(

N−1
(N−a)/2

)
, if N ≡ a (mod 2);(

N−1
(N−a−1)/2

)
, if N 6≡ a (mod 2);

=

(
N − 1

b(N − a)/2c

)
,

as desired. �

Corollary 6.2 Each note occurs in the infinity series with frequency 0, in the limit.

Proof. This follows immediately from Stirling’s formula n! ∼ nne−n
√

2πn(1 + o(1)). �

The binomial coefficient appearing in the formula in Theorem 6.1 suggests that there
should be a combinatorial bijection between the occurrences of the note a in the first 2N

positions of Nørg̊ard’s sequence, and the choice of b(N − a)/2c items from a universe of
N−1 items. However, the simple proof we gave does not provide such a bijection. Hence,
we now reprove Theorem 6.1 in another manner.

Given a positive integer N and another integer n with 0 ≤ n < 2N , we define the word
aN,n recursively as follows: let aN,0 := (01)N/2, and for every n ≥ 1, let r = blog2 nc.
Define

aN,n := aN,n−2r ⊕ 0r1N−r,

where ⊕ represents addition modulo 2. Thus aN,n is a binary word of length N for all n,
and aN,n is obtained by flipping the last N − r bits in aN,n−2r .

The following equivalent, non-recursive definition of aN,n will also be useful. Let B(n)
be the exponents of the powers of 2 appearing in the binary representation of n, that is,

9
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such that
∑

i∈B(n) 2i = n. Thus, for example, B(25) = {0, 3, 4}. Then it is easy to check
that

aN,n = (01)N/2 ⊕
⊕

i∈B(n)

0i1N−i. (2)

For example, the following table lists a4,n for all 0 ≤ n < 24, together with the corre-
sponding values of Nørg̊ard’s sequence s(n):

n s(n) a4,n

0 0 0101
1 1 1010
2 −1 0010
3 2 1101
4 1 0110
5 0 1001
6 −2 0001
7 3 1110
8 −1 0100
9 2 1011
10 0 0011
11 1 1100
12 2 0111
13 −1 1000
14 −3 0000
15 4 1111

Lemma 6.3 For every N ≥ 1, the mapping f(n) = aN,n is a bijection between{
0, 1, . . . , 2N − 1

}
and the binary strings of length N .

Proof. It suffices to show that f(m) 6= f(n) whenever m 6= n. We prove our claim by
induction on N . For N = 1, we have a1,0 = 0, a1,1 = 1, so the base case holds. Now for the
inductive step, suppose that there do exist 0 ≤ m,n < 2N such that aN,m = aN,n. Define
m′ := m if m < 2N−1, and m′ := m−2N−1 otherwise. By the definition of aN,m, we know
that aN,m[1..N−1] = aN−1,m′ . By the same rationale, we see that aN,n[1..N−1] = aN−1,n′

if we define n′ similarly. Thus, we obtain that aN−1,m′ = aN−1,n′ , which contradicts our
inductive hypothesis. �

Next, given a binary word x of length N , we define

G(x) := 1 + 2

 ∑
1≤i≤N

x[i]

−N − x[N ].

Lemma 6.4 For every N ≥ 1, and for every n with 0 ≤ n < 2N , we have s(n) = G(aN,n).

Proof. Fix N . First, it is clear that the claim is true for n = 0 and n = 1. Let r = blog2 nc.
We prove our claim by induction on r. Thus, for the inductive step, we assume that
s(n) = G(aN,n) whenever 0 ≤ n < 2r, and prove the equality for 2r ≤ n < 2r+1.

For convenience, let n′ denote n − 2r. We apply the original (recursive) defini-
tion of the Nørg̊ard sequence and write s(n′) as π1(π2(· · · (πk(s(0))))), where each

10
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πi is either the “negate” or “add one” operation. Then it is not hard to see that
s(n) = π1(π2(· · · (πk(s(1))))), for the same operations π1, . . . , πk.

Note that, among the k operations, exactly |B(n′)| of them are “add one”, and r −
|B(n′)| are “negate”. Thus, we see that s(n) = s(n′) + 1 if and only if r−|B(n′)| is even,
and s(n) = s(n′)− 1 otherwise.

Now, consider aN,n′ . From equation (2), we see that aN,n′ [r+1..N ] is either (01)(N−r)/2

or (10)(N−r)/2. If it is the former, then we know that aN,n = aN,n′ [1..r](10)(N−r)/2, and
so G(aN,n) = G(aN,n′) + 1. Otherwise, we have G(aN,n) = G(aN,n′) − 1. Now from

equation (2) again, aN,n′ [r + 1..N ] = (01)(N−r)/2 if and only if r +B(n′) is even.
Since r − B(n′) and r + B(n′) obviously have the same parity, we have shown that

s(n)−s(n′) = G(aN,n)−G(aN,n′) for all n with 2r ≤ n < 2r+1. This finishes our proof. �

We are now ready to prove the following corollary.

Corollary 6.5 For all integers a and integers N ≥ 1,

Card
{
n : 0 ≤ n ≤ 2N − 1, s(n) = a

}
=

(
N − 1

b(N + a− 1)/2c

)
=

(
N − 1

b(N − a)/2c

)
.

Proof. From Lemma 6.4, we see that s(n) = a if and only if the first N − 1 bits of aN,n

have b(N + a − 1)/2c ones, and aN,n[N ] ≡ N + a − 1 (mod 2). Then we know from
Lemma 6.3 that there is a bijection between such strings and occurrences of a in the first
2N terms of the Nørg̊ard sequence. Thus, the first equality follows. The second follows
because, as is well known,

(
m
t

)
=
(

m
m−t
)
, and⌊

N + a− 1

2

⌋
+

⌊
N − a

2

⌋
= N − 1

for all integers a. �

We note that Mortensen (1992) gave a table with the distribution of notes for the
variation on Nørg̊ard’s infinity series discussed in Section 11, but apparently did not
examine Nørg̊ard’s infinity series itself.

7. The running sum of Nørg̊ard’s sequence

Define h(n) =
∑

0≤i≤n s(i), the running sum of Nørg̊ard’s sequence. The following ta-
ble gives the first few terms of this sequence, which is sequence A274604 in Sloane’s
Encyclopedia (Sloane 2016).

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
h(n) 0 1 0 2 3 3 1 4 3 5 5 6 8 7 4 8 9 9 7 10

Table 4. First few terms of the running sum of Nørg̊ard’s sequence.

The quantity h(n)/(n+ 1) represents the average value of the first n+ 1 notes of the
infinity series. As we will see, this average value is almost exactly 1/2.

Proposition 7.1 If n is even, say n = 2k, then h(n) = k − s(k). If n is odd, say
n = 2k + 1, then h(n) = k + 1.

11
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Proof. We proceed by induction on n. The reader can check the claim for n = 0, 1. Now
assume the claim is true for all n < N ; we prove it for N . Suppose N is even, say N = 2k.
Then

h(N) = h(2k) = s(2k) + h(2k − 1) = −s(k) + k,

where we have used the defining equation (1) and induction. On the other hand, if N is
odd, say N = 2k + 1, then

h(N) = h(2k + 1) = s(2k + 1) + h(2k) = (s(k) + 1) + (k − s(k)) = k + 1,

where we have used equation (1) and induction. �

Similar remarks were made by Bak (2002).

8. Note pairs in the infinity series

We now discuss those pairs (i, j) that occur as two consecutive notes in the infinity
series; we call this two-note phrase a note pair. If there exists n such that s(n) = i
and s(n + 1) = j, we say that the note pair (i, j) is attainable; otherwise we say it is
unattainable.

Theorem 8.1 The pair (i, j) is attainable if any one of the following conditions hold:

(a) i > 0 and −i ≤ j ≤ i− 1;
(b) j ≥ 1 and 1− j ≤ i ≤ j + 1 and i 6≡ j (mod 2);
(c) j ≤ −2 and j + 2 ≤ i ≤ −j − 2 and i ≡ j (mod 2).

Otherwise (i, j) is unattainable.

Proof. The proof has two parts. In the first part we show that if integers i, j obey any
of the conditions (a)–(c) above, then the pair (i, j) is attainable. In the second part of
the proof, we show that the remaining pairs are unattainable.

The following cases cover all three cases (a)–(c):

Case 1: j ≤ min(−1, i − 1) and i ≡ j (mod 2). Take a = −(j + 1) and c = i − (j + 1).
Then the inequalities imply a, c ≥ 0 and the congruence implies that c is odd. Take
(n)2 = 1a01c. Then (n+ 1)2 = 1a+10c. So s(n) = c− a = i and s(n+ 1) = −(a+ 1) = j.

Case 2: j ≥ max(2, 1− i) and i 6≡ j (mod 2). Take a = j − 1 and c = i+ j − 1. Then the
inequalities imply a, c ≥ 0 and the congruence implies that c is even. Take (n)2 = 1a01c.
Then (n+ 1)2 = 1a+10c. So s(n) = c− a = i and s(n+ 1) = a+ 1 = j.

Case 3: i ≥ 0 and 1 − i ≤ j ≤ 1 and i 6≡ j (mod 2). Take a = 1 − j and c = i + j − 1.
Then the inequalities imply a, c ≥ 0 and the congruence implies that c is even. Take
(n)2 = 1a001c. Then (n+ 1)2 = 1a010c. So s(n) = a+ c = i and s(n+ 1) = 1− a = j.

Case 4: i ≥ 0 and 0 ≤ j ≤ i− 1 and i ≡ j (mod 2). Take a = j + 1 and c = i− (j + 1).
Then the inequalities imply a, c ≥ 0 and the congruence implies that c is odd. Take
(n)2 = 1a001c. Then (n+ 1)2 = 1a010c. So s(n) = a+ c = i and s(n+ 1) = a− 1 = j.

Cases (1)–(4) correspond in a somewhat complicated way to parts (a)–(c) of the the-
orem above. Table 5 below illustrates this correspondence.

12
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i\j −12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11

−10 1 A 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 A 2
−9 6 1 A 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 A 2 6
−8 1 6 1 A 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 A 2 6 2
−7 6 1 6 1 A 5 5 5 5 5 5 5 5 5 5 5 5 5 5 A 2 6 2 6
−6 1 6 1 6 1 A 5 5 5 5 5 5 5 5 5 5 5 5 A 2 6 2 6 2
−5 6 1 6 1 6 1 A 5 5 5 5 5 5 5 5 5 5 A 2 6 2 6 2 6
−4 1 6 1 6 1 6 1 A 5 5 5 5 5 5 5 5 A 2 6 2 6 2 6 2
−3 6 1 6 1 6 1 6 1 A 5 5 5 5 5 5 A 2 6 2 6 2 6 2 6
−2 1 6 1 6 1 6 1 6 1 A 5 5 5 5 A 2 6 2 6 2 6 2 6 2
−1 6 1 6 1 6 1 6 1 6 1 A 5 5 A 2 6 2 6 2 6 2 6 2 6
0 1 6 1 6 1 6 1 6 1 6 1 A A 3 6 2 6 2 6 2 6 2 6 2
1 7 1 7 1 7 1 7 1 7 1 7 1 3 7 2 7 2 7 2 7 2 7 2 7
2 1 7 1 7 1 7 1 7 1 7 1 3 4 3 7 2 7 2 7 2 7 2 7 2
3 7 1 7 1 7 1 7 1 7 1 3 1 3 4 2 7 2 7 2 7 2 7 2 7
4 1 7 1 7 1 7 1 7 1 3 1 3 4 3 4 2 7 2 7 2 7 2 7 2
5 7 1 7 1 7 1 7 1 3 1 3 1 3 4 2 4 2 7 2 7 2 7 2 7
6 1 7 1 7 1 7 1 3 1 3 1 3 4 3 4 2 4 2 7 2 7 2 7 2
7 7 1 7 1 7 1 3 1 3 1 3 1 3 4 2 4 2 4 2 7 2 7 2 7
8 1 7 1 7 1 3 1 3 1 3 1 3 4 3 4 2 4 2 4 2 7 2 7 2
9 7 1 7 1 3 1 3 1 3 1 3 1 3 4 2 4 2 4 2 4 2 7 2 7
10 1 7 1 3 1 3 1 3 1 3 1 3 4 3 4 2 4 2 4 2 4 2 7 2
11 7 1 3 1 3 1 3 1 3 1 3 1 3 4 2 4 2 4 2 4 2 4 2 7

Table 5. Illustration of the cases in the proof of Theorem 8.1.

The letter A represents the fact that both cases (5) and (6) below hold.
The pairs not covered by conditions (a)-(c) above can be divided into three parts:

Case 5: i ≤ 0 and i− 1 ≤ j ≤ −i.

Case 6: i ≤ 0 and (j ≥ −i and i ≡ j (mod 2)) or (j ≤ i and i 6≡ j (mod 2)).

Case 7: i > 0 and (j ≤ −(i+ 1) and i 6≡ j (mod 2)) or (j ≥ i and i ≡ j (mod 2)).

We need to show all of these pairs are unattainable.
First, we need a lemma.

Lemma 8.2 Suppose n = 4k + a for 0 ≤ a ≤ 3, and s(n) = i and s(n + 1) = j. Then
the values of s(k), s(2k), s(2k + 1), and s(2k + 2) are as follows.

a s(k) s(2k) s(2k + 1) s(2k + 2) j
0 i −i i+ 1 — 1− i
1 1− i i− 1 2− i — i− 2
2 −i− 1 i+ 1 −i — 1− i
3 i− 2 2− i i− 1 −j —

Proof. This follows immediately from the defining recursion. �

We now show that Case 5 above cannot occur. Choose the smallest possible n such that
s(n) = i and s(n+ 1) = j, over all i, j satisfying the conditions i ≤ 0 and i− 1 ≤ j ≤ −i.

From the table in Lemma 8.2 above we see that if n = 4k or n = 4k + 2 we have
j = 1 − i > −i, a contradiction. Similarly, if n = 4k + 1 then j = i − 2 < i − 1, a
contradiction. Hence n = 4k + 3.

Now consider n′ := 2k + 1 = (n − 1)/2 < n. Let i′ := i − 1 and j′ = −j. Note that
i′ < i ≤ 0 and i′ − 1 = i − 2 < −j − 2 < −j = j′. However s(n′) = i − 1 = i′ and
s(n′ + 1) = s(2k + 2) = −s(4k + 4) = −j = j′, contradicting the minimality of n.

Next we show that Case 6 above cannot occur. Choose the smallest possible n such
that s(n) = i and s(n + 1) = j, over all i, j satisfying (j ≥ −i and i ≡ j (mod 2)) or
(j ≤ i and i 6≡ j (mod 2)).

13
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From the table in Lemma 8.2 above we see that if n = 4k or n = 4k+2 then j = 1−i > 0
(since i ≤ 0). So i ≡ j (mod 2). This contradicts j = 1− i. Similarly, if n = 4k + 1, then
j = i− 2. Since i ≤ 0 we have j < 0 and hence i 6≡ j (mod 2). This contradicts j = i− 2.
Hence n = 4k + 3.

Now consider n′ := 2k + 1 = (n − 1)/2 < n. Let i′ := i − 1 and j′ = −j. Note that
i′ < 0. There are now two subcases to consider: (i) j ≥ −i and i ≡ j (mod 2) and (ii)
j ≤ i and i 6≡ j (mod 2).

Subcase (i): The case j = −i is already ruled out by Case 5. So j ≥ 1 − i. Then
j′ = −j ≤ i − 1 = i′. Furthermore j′ 6≡ i′ (mod 2). However s(n′) = i − 1 = i′ and
s(n′ + 1) = s(2k + 2) = −s(4k + 4) = −j = j′, contradicting the minimality of n.

Subcase (ii): The pair where j = i is already unattainable by Case 5. So j < i.
Then j′ = −j > −i, implying j′ ≥ 1 − i = −i′. Furthermore i ≡ j (mod 2). Again
s(n′) = i − 1 = i′ s(n′ + 1) = s(2k + 2) = −s(4k + 4) = −j = j′, contradicting the
minimality of n.

Finally, we now show that Case 7 cannot occur. Suppose there is a pair of values
(s(n), s(n + 1)) = (i, j) satisfying the conditions i > 0 and either j ≤ −(i + 1) and
i 6≡ j (mod 2), or j ≥ i and i ≡ j (mod 2). Among all such (i, j), let J be the minimum
of the absolute values of j. Among all pairs of the form (i,±J), let (I, J ′) be a pair with
the smallest value of the first coordinate (which is necessarily positive).

Suppose n is such that s(n) = I and s(n+1) = J ′. If n = 4k or n = 4k+2 then from the
table in Lemma 8.2 above we get J ′ = 1−I > (−1)−I and J ′ = 1−I < 0, a contradiction.
If n = 4k + 1 then from the table in Lemma 8.2 above we get J ′ = I − 2 > −(I + 1)
(since I > 0) and J ′ = I − 2 < I, a contradiction. Hence n = 4k + 3.

Then the table in Lemma 8.2 above implies that if we take n′ = 2k+1 = (n−1)/2 < n,
and I ′ = I−1 and s(n′) = I ′ and s(n′+1) = −J ′. If I ′ > 0 then (I ′,−J ′) is a pair whose
second coordinate has the same absolute value as (I, J), but whose first coordinate is
smaller, a contradiction. Otherwise I ′ = 0. But then the pair (0,−J ′) is not attainable
by (b), a contradiction. �

Next we show that Nørg̊ard’s sequence is recurrent: every block of notes that occurs
in s, occurs infinitely many times in s.

Theorem 8.3 Nørg̊ard’s sequence s is recurrent.

Proof. Let (a0, a1, . . . , aj−1) be a block of j consecutive values of the infinity series, for
some j ≥ 1, that is, suppose there exists n such that s(n + i) = ai for 0 ≤ i < j. Then
there exists a power of 2, say 2N , such that j ≤ 2N . It therefore suffices to show that the
block B := (s(0), s(1), . . . , s(2N − 1)) appears infinitely often.

Consider the block

At = (s(5 · 2N+t), s(5 · 2N+t + 1), . . . , s(5 · 2N+t + 2N − 1)).

We claim that At = B for all t ≥ 0. To see this, note that the binary expansion of
5 · 2N+t + i, for 0 ≤ i < 2N , looks like 1010t followed by w, where w is the binary
expansion of i padded on the left with zeros to make its length N . It now follows from
Lemma 3.1 that s(5 · 2N+t + i) = ai for 0 ≤ i < 2N , thus producing a new occurrence of
B for each t ≥ 0. �

Next we consider the possible intervals1 that can occur in the infinity series.

1“Intervals” here is meant in the musical and not mathematical sense; that is, we mean the number of half

14
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Corollary 8.4 There exists n such that s(n+1)−s(n) = k if and only if either k < 0,
or k > 0 and k odd.

Proof. This follows immediately from Theorem 8.1. �

Corollary 8.5 A note pair (a, b) never occurs at both an odd and an even position in
s.

Proof. Suppose (a, b) occurs at an even position. Then from the recurrence we have
b = 1 − a. If it occurs at an odd position too, say n = 2k + 1, then s(k) = a − 1 and
s(k+ 1) = −b. Then at position k we have the pair (a− 1, a− 1), which by Theorem 8.1
does not occur. �

Corollary 8.6 There are never five or more consecutive non-negative notes in s, and
five is the best possible bound.

Proof. Assume there five such notes. Then there are four consecutive non-negative notes
starting at an even position. From the recursion, these four notes, starting at position n,
are of the form a, 1−a, b, 1−b. Now a ≥ 0 and 1−a ≥ 0 imply a ∈ {0, 1}, and similarly for
b. From the recursion, starting at position n/2 we must have the notes (−a,−b). However,
from Theorem 8.1, none of the note pairs {(0, 0), (−1, 0), (0,−1), (−1,−1)} occur. This
contradiction proves the result.

To see that the bound of five is best possible, observe that (2,0,1,2) occurs beginning
at s(9) = 2, and hence by Theorem 8.3 occurs infinitely often in s. �

In a similar fashion, we can prove there are never more than two consecutive positive
notes, or two consecutive negative notes, or two consecutive non-positive notes, in the
infinity series.

We say a block of notes (a phrase) is ascending (respectively, descending) if the pitch
of each note is greater than (respectively, is less than) that of the immediately preceding
note.

Theorem 8.7 In the infinity series every ascending phrase consists of at most three
notes, and every descending phrase consists of at most four notes. Examples of both
occur infinitely often.

Proof. We prove only the claim about ascending phrases, with the descending ones han-
dled similarly.

Assume there exists n such that s(n) < s(n+ 1) < s(n+ 2) < s(n+ 3).

Case 1: n is even. Then n = 2k. Write s(k) = a and s(k + 1) = b. Then s(n) = −a,
s(n+ 1) = a+ 1, s(n+ 2) = −b, and s(n+ 3) = b+ 1. Hence −a < a+ 1 < −b < b+ 1,
which implies both a > b and a < b, a contradiction.

Case 2: n is odd. Then n = 2k + 1. Write s(k) = a, s(k + 1) = b, and s(k + 2) = c,
so that s(n) = a + 1, s(n + 1) = −b, s(n + 2) = b + 1, and s(n + 3) = −c. Hence
a+ 1 < −b < b+ 1 < −c. If k is even then b = 1− a, which implies that a+ 1 < a− 1, a
contradiction. If k is odd then c = 1−b, which implies that b+1 < b−1, a contradiction.

On the other hand, the phrase (0, 1, 2) occurs starting at s(10) = 0, and so infinitely
often by Theorem 8.3. �

steps separating two consecutive notes.
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9. Repetitions in the infinity series

Repetitions in sequences have been an object of intense study since the pioneering results
of Axel Thue more than a hundred years ago (see Thue (1906, 1912); Berstel (1995)).
Thue proved that the Thue-Morse sequence (i.e., the infinity series taken modulo 2) is
overlap-free: it contains no block of the form xxa where x is a nonempty block and a is
the first number in x.

In this section we characterise close repetitions in the infinity series. We prove that the
infinity series has an even stronger avoidance property than the Thue-Morse sequence.

Theorem 9.1 If the infinity series contains a block of the form xyx, with x nonempty,
then |y| ≥ 2|x|. In particular s contains no two consecutive identical blocks.

Proof. We call a block of notes of the form xyx with |y| < 2|x| a proximal repetition.
Assume, contrary to what we want to prove, that s has a proximal repetition xyx oc-
curring for the first time at some position n. Then, without loss of generality, we can
assume that |y| is minimal over all proximal repetitions occurring in s. Furthermore, we
can assume that n is as small as possible over all occurrences of this xyx in s. Finally,
we can assume that |x| is as small as possible over all xyx with |y| minimal occurring at
position n. There are a number of cases to consider.

Case 1: |x| = 1. If s contains xyx with |y| < 2|x| then x = a and y = b for single numbers
a, b.

If aba occurs beginning at an even position n = 2k, then from Observation 2.1, we
know that b immediately follows the second a. So abab occurs at position 2k. Then from
the recurrence we know that (−a)(−a) occurs at position k. But from Corollary 8.4 we
know that this is impossible.

If aba occurs beginning at an odd position n = 2k + 1, then from Observation 2.1, we
know that b immediately precedes the first a in s. So baba occurs at position 2k, and we
have already ruled this out in the previous paragraph.

Case 2: |x| ≥ 2 and |x| 6≡ |y| (mod 2). Then by considering the first two notes of x, say
ab, we have that ab occurs beginning at both an odd and an even position, contradicting
Corollary 8.5.

Case 3: |x| ≥ 2 and both |x|, |y| even. If the block xyx occurs starting at an even position
n = 2k, then x′y′x′ occurs at position k. Now |x′| = |x|/2 and |y′| = |y|/2 and x = g(x′),
y = g(y′), for g defined in Observation 2.2, so x′y′x′ is a proximal repetition occurring
at position k. If |y| > 0, then |y′| < |y|, contradicting our assumption that |y| was
minimal. If |y| = 0, and n > 0, then x′y′x′ occurs at position n/2 < n, contradicting the
assumption that our xyx occurs at the earliest possible position. Finally, if |y| = 0 and
n = 0, then |x′| < |x|/2, contradicting the minimality of |x|.

Otherwise xyx occurs starting at an odd position n = 2k + 1. If |y| = 0 then write
x = wa for a single number a. Since |x| is even and xyx = wawa occurs beginning at an
odd position, the first a is at an even position. So another a immediately precedes the
first w. Then awaw occurs starting at position n = 2k. This contradicts our assumption
that xyx was the earliest occurrence.

Otherwise |y| > 0. Write x = aw for a single letter a and y = zb for a single letter
b. Note that |z| is odd. Since both |x| and |y| are even, b occurs at an even position
and immediately precedes the second occurrence of x. So b also immediately precedes
the first occurrence of x. Thus bxyx = bawzbaw occurs at position 2k. Then |z| < |y| <
2|x| < 2|baw|, so (baw)z(baw) is a proximal repetition with |z| < |y|. This contradicts

16



February 18, 2017 Journal of Mathematics and Music nor15

our assumption that |y| was minimal.

Case 4: |x| ≥ 2 and both |x|, |y| odd. Suppose xyx begins at an even position, say n = 2k.
Then, writing y = az for a single number a, we see that a immediately follows the first x
and occurs at an odd position. So a also follows the second x and we know xazxa occurs
at position n. Since |xa| and |z| are both even, there exist x′, y′ with g(x′) = xa and
g(y′) = z. So x′y′x′ occurs at position k. However |y′| = |z|/2 = (|y|− 1)/2 < |x|− 1/2 <
|x| = 2|x′| − 1, and so x′y′x′ is a proximal repetition with |y′| < |y|. This contradicts our
assumption that |y| was minimal.

Similarly, if xyx begins at an odd position, say n = 2k + 1, then we can write y = za
for a single number a. Then a occurs at an even position and immediately precedes the
second x, so it also occurs immediately before the first x. Thus axzax occurs at position
n = 2k. Then we can argue about ax and z exactly as in the preceding paragraph to get
a contradiction. �

We remark that Theorem 9.1 is optimal since, for example, at position 1 of s we have
(1,−1, 2, 1), which corresponds to x = 1, y = (−1, 2) and |y| = 2|x|. By applying g to
this occurrence we find larger and larger occurrences of xyx satisfying the same equality.
For example, by consulting Figure 1, we see that the four-note phrase (A[,G, F\,B[)
occurs in measure 2 and measure 5, separated by the 8 notes of measures 3 and 4.

Musically, we may say that although each phrase in the infinity series occurs infinitely
often, we never hear exactly the same phrase twice without a relatively long delay between
the two occurrences. This may partially account for the impression of neverending novelty
in the music.

10. Characterizing the infinity series

The infinity series has been called unique (e.g., Mortensen (2003b)). To make this kind
of assertion mathematically rigorous, however, we need to decide on the main properties
of the sequence to see if there could be other sequences meeting the criteria.

Although these main properties could be subject to debate, here are a few of the
properties of s observed by us and others:

1. s is a surjective map from N to Z. That is, for all a ∈ Z there exists n such that
s(n) = a.

Proof. If a ≥ 0, then it is easy to see that s(2a − 1) = a. If a < 0, then it is easy to see
that s(21−a − 2) = a. �

2. It is k-self-similar (Mortensen 2003b). That is, there exists a k ≥ 2 such that for all
i ≥ 0 and all j with 0 ≤ j < ki, the subsequence (s(kin + j))n≥0 is either of the form
s(n) + a for some a (in other words, the sequence transposed by a half steps) or of the
form −s(n) + a for some a (in other words, the sequence inverted and then transposed
by a half steps). In the Nørg̊ard sequence, we have k = 2.

3. Every interval occurs. That is, for all i 6= 0, there are two consecutive notes that are
exactly i half steps apart. More precisely, for all i > 0 there exists n such that

|s(n+ 1)− s(n)| = i.

17



February 18, 2017 Journal of Mathematics and Music nor15

Note, however, that by Theorem 8.1, it is not true that every possible note pair occurs
somewhere. In fact, asymptotically, only half of all possible note pairs occur. Furthermore,
some intervals occur only in a descending form; by Corollary 8.4 this is true exactly of
all even intervals.

4. Every interval that occurs, occurs beginning at infinitely many different notes. That
is, for all negative i and all positive odd i, there are infinitely many distinct j such that
there exists n with s(n) = j and s(n+ 1) = i+ j.

5. Runs of consecutive negative (respectively, positive, non-negative, non-positive)
notes are of bounded length (Theorem 8.6).

6. Ascending and descending phrases are of bounded length (Theorem 8.7).

7. It is recurrent; that is, to say, every block of values that occurs, occurs infinitely
often (Theorem 8.3).

8. It grows slowly, that is, |s(n)| = O(log n), and furthermore there exists a constant c
such that |s(n)| > c log n infinitely often (Corollary 4.2). Musically, this corresponds to
novel notes appearing infinitely often, but with longer and longer delays between their
first appearances.

9. It is non-repetitive or “squarefree”. That is, for all n ≥ 1 and i ≥ 0 the phrase given
by the notes (s(i), s(i + 1), . . . , s(i + n − 1)) is never followed immediately by the same
phrase repeated again. We proved an even stronger statement for Nørg̊ard’s sequence in
Theorem 9.1.

Are there other sequences with the same nine properties? Of course the negated se-
quence −s = (−s(n))n≥0 also satisfies them, but a brief computer search turned up many
others. For example, consider the sequence t = (t(n))n≥0 given by the rules

t(0) = 0

t(4n) = t(n)

t(4n+ 1) = t(n)− 2

t(4n+ 2) = −t(n)− 1

t(4n+ 3) = t(n) + 2.

The first few terms are depicted in Table 6.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
t(n) 0 −2 −1 2 −2 −4 1 0 −1 −3 0 1 2 0 −3 4 −2 −4 1

Table 6. The sequence t.

Interpreted musically, starting at C, the first 64 notes of this sequence are depicted in
Figure 4.
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Figure 4. A self-similar sequence consisting of the first 64 notes of t, starting with C = 0.

It is not hard to prove, along the lines of the the proofs given above, that t shares all
nine properties with s. So in fact, s is not really unique at all, at least mathematically
speaking.

11. Variations

Nørg̊ard also explored variations on the infinity series. The descriptions given in
Mortensen (1992; 2003d; 2005) are a little imprecise, so we reformulate them below.

First variation:

u(0) = 0

u(3n) = −u(n)

u(3n+ 1) = u(n)− 2

u(3n+ 2) = u(n)− 1

The first few terms are given in Table 7.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
u(n) 0 −2 −1 2 −4 −3 1 −3 −2 −2 0 1 4 −6 −5 3 −5 −4 −1

Table 7. Mortensen’s first variation on the infinity series.

Note that this sequence has a repetition of order three (“cube”) beginning at position
32: (−1,−1,−1). This, together with the recursion, ensures that there will be arbitrarily
large such repetitions in the sequence. It fails property 9 of the previous section.
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Second variation:

v(0) = 0

v(3n) = −v(n)

v(3n+ 1) = v(n)− 3

v(3n+ 2) = −2− v(n)

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
v(n) 0 −3 −2 3 −6 1 2 −5 0 −3 0 −5 6 −9 4 −1 −2 −3 −2

Table 8. Mortensen’s second variation on the infinity series.

This sequence fails to have property 3: not every interval occurs. In fact, only intervals
of an odd number of half steps occur. However, it has all the other properties listed in
the previous section.
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