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Abstract

Independently, Pirillo & Varricchio, Halbeisen & Hungerbühler, and Freedman con-
sidered the following problem, open since 1992: Does there exist an infinite word w

over a finite subset of Z such that w contains no two consecutive blocks of the same
length and sum? We consider some variations on this problem in the light of van der
Waerden’s theorem on arithmetic progressions.

1 Introduction

Avoidability problems play a large role in combinatorics on words (see, e.g., [11]). By a
square we mean a nonempty word of the form xx, where x is a word; an example in English
is murmur. A classical avoidability problem is the following: Does there exist an infinite word
over a finite alphabet that contains no squares? It is easy to see that no such word exists if
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the alphabet size is 2 or less, but if the alphabet size is 3, then such a word exists, as proven
by Thue [15, 16] more than a century ago.

An abelian square is a nonempty word of the form xx′ where |x| = |x′| and x′ is a
permutation of x. An example in English is reappear. In 1961, Erdős [3] asked: Does there
exist an infinite word over a finite alphabet containing no abelian squares? Again, it is not
hard to see that this is impossible over an alphabet of size less than 4. Evdokimov [4] and
Pleasants [14] gave solutions for alphabet size 25 and 5, respectively, but it was not until
1992 that Keränen [9] proved that an infinite word avoiding abelian squares does indeed
exist over a 4-letter alphabet.

Independently, Pirillo & Varricchio [13], Halbeisen & Hungerbühler [7], and Freedman [5]
suggested yet another variation. Let a sum-square be a factor of the form xx′ with |x| = |x′|
and

∑

x =
∑

x′, where by
∑

x we mean the sum of the entries of x. Is it possible to
construct an infinite word over a finite subset of Z that contains no sum-squares? This very
interesting question has been open for 18 years. Freedman [5] showed that the answer is “no”
in the case when the infinite word is over 4 real numbers {a, b, c, d} such that a+ d = b+ c.

Halbeisen & Hungerbühler observed that the answer is also “no” if we omit the condition
|x| = |x′|. Their tool was a famous one from combinatorics: namely, van der Waerden’s
theorem on arithmetic progressions [17].

Theorem 1. (van der Waerden) Suppose N is colored using a finite number of colors. Then
there exist arbitrarily long monochromatic arithmetic progressions.

In this note we consider several variations on this problem (the sum-square problem,
for short). In Section 2, we show there is no infinite abelian squarefree word in which
the difference between the frequencies of any two letters is bounded above by a constant.
Section 3 deals with the problem of avoiding sum-squares, modulo k. While it is known
there is no infinite word with this property (for any k), we show that there is an infinite
word over {−1, 0, 1} that is squarefree and avoids all sum-squares in which the sum of the
entries is non-zero.

In Section 4, we provide upper and lower bounds on the length of any word over Z
that avoids sum-squares (and higher-power-equivalents) modulo k. We conclude with some
computational results in Section 5.

2 First Variation

We start with an infinite word w already known to avoid abelian squares (such as Keränen’s,
or other words found by Evdokimov [4] or Pleasants [14]) over some finite alphabet Σk =
{0, 1, . . . , k − 1}. We then choose an integer base b ≥ 2 and replace each occurrence of i
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in w with bi, obtaining a new word x. If there were no “carries” from one power of b to
another, then x would avoid sum-squares. We can avoid problematic “carries” if and only
if, whenever xx′ is a factor with |x| = |x′|, then the number of occurrences of each letter in
x and x′ differs by less than b. In other words, we could solve the sum-square problem if we
could find an abelian squarefree word such that the difference in the number of occurrences
between the most-frequently-occurring and least-frequently-occurring letters in any prefix is
bounded. As we will see, though, this is impossible.

More generally, we consider the frequencies of letters in abelian power-free words. By an
abelian r-power we mean a factor of the form x1x2 · · · xr, where |x1| = |x2| = · · · = |xr| and
each xi is a permutation of x1. For example, the English word deeded is an abelian cube.

We introduce some notation. For a finite word w, we let |w| be the length of w and let
|w|a be the number of occurrences of the letter a in w. Let Σ = {a1, a2, . . . , ak} be a finite
ordered alphabet. Then for w ∈ Σ∗, we let ψ(w) denote the vector (|w|a1

, |w|a2
, . . . , |w|ak

).
The map ψ is sometimes called the Parikh map. For example, if Σ = {v, l, s, e}, then
ψ(sleeveless) = (1, 2, 3, 4).

For a vector u, we let ui denote the (i + 1)st entry, so that u = (u0, u1, . . . , uk−1). If u
and v are two vectors with real entries, we define their L∞ distance µ(u, v) to be

max
0≤i<k

|ui − vi|.

If w = b1b2 · · · is an infinite word, with each bi ∈ Σ, then by w[i] we mean the symbol
bi and by w[i..j] we mean the word bibi+1 · · · bj. Note that if i = j + 1, then w[i..j] = ε, the
empty word.

Theorem 2. Let w be an infinite word over the finite alphabet {0, 1, . . . , k − 1} for some
k ≥ 1. If there exist a vector v ∈ Qk and a positive integer M such that

µ(ψ(w[1..i]), iv) ≤M (1)

for all i ≥ 0, then w contains an abelian α-power for every integer α ≥ 2.

Proof. First, note that
∑

0≤i<k

vi = 1. (2)

For otherwise we have
∑

0≤i<k vi = c 6= 1, and then µ(ψ(w[1..i]), iv) is at least |c− 1| i
k
, and

hence unbounded as i→∞.

For i ≥ 0, define X (i) = ψ(w[1..i])− iv. Then

X(i+j) −X(i) = (ψ(w[1..i+ j])− (i+ j)v)− (ψ(w[1..i])− iv)

= ψ(w[i+ 1..i+ j])− jv (3)
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for integers i, j ≥ 0. For i ≥ 0, define Γ(i) to be the vector with
(

k

2

)

entries given by

X
(i)
l −X

(i)
m for 0 ≤ l < m < k.

From (1), we know that Γ(i) ∈ [−M,M ](
k
2). Let L be the least common multiple of the

denominators of the (rational) entries of v. Then the entries of LΓ(i) are integers, and lie in
the interval [−LM,LM ]. It follows that {Γ(i) : i ≥ 0} is a finite set of cardinality at most

(2LM + 1)(
k
2).

Consider the map that sends i to Γ(i) for all i ≥ 0. Since this is a finite coloring of the
positive integers, we know by van der Waerden’s theorem that there exist n, d ≥ 1 such that
Γ(n) = Γ(n+ d) = . . . = Γ(n+ αd).

Now Γ(n+ id) = Γ(n+ (i+ 1)d) for 0 ≤ i < α, so

X
(n+id)
l −X(n+id)

m = X
(n+(i+1)d)
l −X(n+(i+1)d)

m ,

for 0 ≤ l < m < k and hence

X
(n+(i+1)d)
l −X

(n+id)
l = X(n+(i+1)d)

m −X(n+id)
m . (4)

for 0 ≤ l < m < k. Actually, it is easy to see that Eq. (4) holds for all l,m with 0 ≤ l,m < k.

Using Eq. (3), we can rewrite Eq. (4) as

(ψ(w[n+ id+ 1..n+ (i+ 1)d])− dv)l = (ψ(w[n+ id+ 1..n+ (i+ 1)d])− dv)m

for 0 ≤ l,m < k. It follows that

|w[n+ id+ 1..n+ (i+ 1)d] |l − dvl = |w[n+ id+ 1..n+ (i+ 1)d] |m − dvm

and hence

|w[n+ id+ 1..n+ (i+ 1)d] |l − |w[n+ id+ 1..n+ (i+ 1)d] |m = d(vl − vm) (5)

for 0 ≤ l,m < k.

Now let z = w[n+ id+ 1..n+ (i+ 1)d]. Then Eq. (5) can be rewritten as

|z|l − |z|m = d(vl − vm) (6)

for 0 ≤ l,m < k. Note that

|z|0 + |z|1 + · · ·+ |z|k−1 = |z| = d. (7)

Fixing l and summing Eq. (6) over all m 6= l, we get

(k − 1)|z|l −
∑

m6=l

|z|m = d(k − 1)vl − d
∑

m6=l

vm
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and hence by (2) and (7) we get

(k − 1)|z|l − (d− |z|l) = d(k − 1)vl − d(1− vl).

Simplifying, we have k|z|l − d = dkvl − d, and so |z|l = dvl.

We therefore have ψ(w[n+id+1..n+(i+1)d]) = dv, for 0 ≤ i < α. Hence w[n+1..n+αd]
is an abelian α-power.

The following special case of Theorem 2 is of particular interest.

Corollary 3. Suppose w is an infinite word over a finite alphabet such that in any prefix
of w, the difference of the number of occurrences of the most frequent letter and that of the
least frequent letter is bounded by a constant. Then w contains an abelian α-power for every
α ≥ 2.

Proof. Given w, let p(i) (resp. q(i)) denote the number of occurrences of the most frequent
(resp. least frequent) letter in w[1..i]. Notice that q(i) ≤ i

k
≤ p(i) for all i.

Suppose ∃T such that p(i)− q(i) < T, ∀i ≥ 1. Then if we let v := ( 1
k
, 1

k
, . . . , 1

k
), we have

µ(φ(w[1..i]), iv) = max{|p(i)− i

k
|, |q(i)− i

k
|} < T,

and Theorem 2 applies.

3 Second Variation

Our second variation is based on the following trivial idea: We could avoid sum-squares if
we could avoid them (mod k) for some integer k ≥ 2. That is, instead of trying to avoid
factors with blocks that sum to the same value, we could try to avoid blocks that sum to the
same value modulo k. The following result shows this is impossible, even if we restrict our
attention to blocks that sum to 0 (mod k). More general results are known (e.g., [8]; [11,
Chap. 4]), but we give the proof for completeness.

Theorem 4. For all infinite words w over the alphabet Σk = {0, 1, ..., k−1} and all integers
r ≥ 2 we have that w contains a factor of the form x1x2 · · · xr, where |x1| = |x2| = · · · = |xr|
and

∑

x1 ≡
∑

x2 ≡ · · · ≡
∑

xr ≡ 0 (mod k).

Proof. For i ≥ 0 define y[i] =
(

∑

1≤j≤i w[i]
)

mod k; note that y[0] = 0. Then y is an

infinite word over the finite alphabet Σk, and hence by van der Waerden’s theorem there
exist indices n, n+ d, . . . , n+ rd such that

y[n] = y[n+ d] = · · · = y[n+ rd].
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Hence y[n+ (i+ 1)d]− y[n+ id] = 0 for 0 ≤ i < r. But

y[n+ (i+ 1)d]− y[n+ id] ≡
∑

w[n+ id+ 1..n+ (i+ 1)d] (mod k),

so
∑

w[n+ id+ 1..n+ (i+ 1)d] ≡ 0 (mod k) for 0 ≤ i < r.

Theorem 4 shows that for all k we cannot avoid xx′ with |x| = |x′| and ∑

x ≡ ∑

x′ ≡
0 (mod k). This raises the natural question, can we avoid xx′ with |x| = |x′| and

∑

x ≡
∑

x′ ≡ a (mod k) for all a 6≡ 0 (mod k)? As phrased, the question is not so interesting,
since the word 0ω = 000 · · · satisfies the conditions. If we also impose the condition that
the avoiding word be not ultimately periodic, or even squarefree, however, then it becomes
more interesting. As we will see, we can even avoid both squares and factors xx′ with
∑

x ≡ ∑

x′ ≡ a (mod k) for all a 6≡ 0 (mod k) (with no condition on the length of x and
x′).

Theorem 5. Let the morphism ϕ be defined by

0 → 0 1 0′−1
1 → 0 1−1 1
0′ → 0′−1 0 1
−1 → 0′−1 1−1

and let τ be the coding defined by

0, 0′ → 0

1→ 1

−1→ −1

Then the infinite word w = τ(ϕω(0)) avoids both squares and factors of the form xx′ where
∑

x =
∑

x′ 6= 0.

Proof. The fact that ϕω(0) exists follows from 0→ 0 1 0′−1, so that τ(ϕω(0)) is a well-defined
infinite word.

To make things a bit easier notationally, we may write 1 for −1.

First, let us show that w avoids squares. Assume, to get a contradiction, that there is
such a square xx′ in w, with x = x′, and without loss of generality assume |x| is as small as
possible. Let n = |x|, and write x = x[1..n], x′ = x′[1..n].

We call 4 consecutive symbols of w that are aligned, that is, of the form w[4i+1..4i+4],
a block. Note that a block B can be uniquely expressed as τ(ϕ(a)) for a single symbol a. We
call a the inverse image of B.
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Case 1: |xx′| ≤ 25. It is easy to verify by exhaustive search that all subwords of length
25 of w are squarefree. (There are only 82 such subwords.)

Case 2: |x| ≥ 13. Then there is a block that begins at either x[5], x[6], x[7], or x[8]. Such
a block y has at least 4 symbols of x to its left, and ends at an index at most 11. Thus there
are at least 2 symbols of x to the right of y. We call such a block (with at least 4 symbols
to the left, and at least 2 to the right) a centered block.

Case 2a: |x| ≡ 1, 3 (mod 4). Then x contains a centered block y. Hence x′ contains an
occurrence of y (call it y′) starting at the same relative position. Since |x| ≡ 1, 3 (mod 4), y ′

overlaps a block z starting at 1 or 3 positions to its left. Since y is centered, z lies entirely
within x′. But this is impossible, since y is a block, and hence starts with 0, while the second
and fourth symbol of every block z′ is ±1. See Figure 1.

�������
�������
�������
�������y y′

z

x x′

Figure 1: Case 2a

Case 2b: |x| ≡ 2 (mod 4). By the same reasoning, x contains a centered block y,
so x′ contains an occurrence of y (called y′) starting at the same relative position. Since
|x| ≡ 2 (mod 4), y′ overlaps a block z starting at 2 positions to its left, and z lies entirely
within x′. But by inspection, this can only occur if

(i) y starts with 01 and z ends with 01; or

(ii) y starts with 01 and z ends with 01.

In case (i), y is either 0111 or 0101, and z = 0101. If y = 0111, then consider the block
z′ that follows z in y′. It must begin 11, a contradiction. Hence y = 0101.

Now the first two symbols of z precede y′ in x′ and hence must also precede y′ = y in x.
Thus the block y′′ that precedes y in x must end in 01; it is entirely contained in x because
y is centered. Hence y′′ = 0101, and y′′y is a shorter square in w, a contradiction. See
Figure 2.
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x x′

yy′′ y′

z z′

Figure 2: Case 2b(i)

In case (ii), y is either 0111 or 0101, and z = 0101. If y = 0111, then consider the block
z′ that follows z in y′. It must begin 11, a contradiction. Hence y = 0101.

Now the first two symbols of z precede y′ in x′ and hence must also precede y′ in x. Thus
the block y′′ that precedes y in x must end in 01; it is entirely contained in x because y is
centered. Hence y′′ = 0101. Hence y′′y is a shorter square in w, a contradiction.

Case 2c: |x| ≡ 0 (mod 4). Then we can write x = rx1x2 · · · xjl
′, x′ = r′x′1x

′
2 · · · x′jl′′,

where lr = x0 (this defines l), l′r′ = x′0, l
′′r′′ = x′j+1, and x1, . . . , xj, x

′
0, . . . x

′
j+1 are all blocks.

Furthermore, since x = x′ and τ ◦ ϕ is injective, we have r = r′, x1 = x′1, . . . , xj = x′j, and
l′ = l′′. See Figure 3. There are several subcases, depending on the index i in w in which x
begins.

x x′

x1 x2 xj x′0 x′2 · · ·· · · x′j x′j+1

rl l′ r′ l′′ r′′
x′1x0

Figure 3: Case 2c

Subcase (i): i ≡ 1, 2 (mod 4). Then |r| = |r′| = |r′′| = 2 or 3. Since any block is
uniquely determined by a suffix of length 2, we must have r = r′ and so x0 = x′0. Hence
x0 · · · xjx0 · · · xj corresponds to a shorter square in w, by taking the inverse image of each
block, a contradiction.

Subcase (ii): i ≡ 3 (mod 4). Then |l| = |l′| = |l′′| = 3. Again, any block is uniquely
determined by a prefix of length 3, so l′ = l′′. Thus x′0 = x′j+1 and x1 · · · xjx

′
0x
′
1 · · · x′j+1 is a

square. But each of these terms is a block, so this corresponds to a shorter square in w, by
taking the inverse image of each block, a contradiction.

Subcase (iii): i ≡ 0 (mod 4). In this case both x and x′ can be factored into identical
blocks, and hence correspond to a shorter square in w, by taking the inverse image of each
block, a contradiction.
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This completes the proof that w is squarefree.

It remains to show that if xx′ are consecutive factors of w, then
∑

x cannot equal
∑

x′

unless both are 0.

First, we prove a lemma.

Lemma 6. Let ζ be the morphism defined by

0, 0′ → 0 1 0′−1
1 → 0 1−1 1 0′−1

−1 → 1−1.

Then

(a) ϕn ◦ ζ = ζn+1 for all n ≥ 0.

(b) ϕn(0) = ζn(0) for n ≥ 0.

Proof. (a): The claim is trivial for n = 0. For n = 1, it becomes ϕ ◦ ζ = ζ2, a claim that can
easily be verified by checking that ϕ(ζ(a)) = ζ2(a) for all a ∈ {−1, 0, 1, 0′}.

Now assume the result is true for some n ≥ 1; we prove it for n+ 1:

ϕn+1 ◦ ζ = (ϕ ◦ ϕn) ◦ ζ
= ϕ ◦ (ϕn ◦ ζ)
= ϕ ◦ ζn+1 (by induction)

= ϕ ◦ (ζ ◦ ζn)

= (ϕ ◦ ζ) ◦ ζn

= ζ2 ◦ ζn

= ζn+2.

(b): Again, the result is trivial for n = 0, 1. Assume it is true for some n ≥ 1; we prove
it for n+ 1. Then

ζn+1(0) = ϕn(ζ(0)) (by part (a))

= ϕn(ϕ(0))

= ϕn+1(0).

¦
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Now let β : {0, 1,−1}∗ → {0, 1,−1}∗ be defined as follows:

0 → 0 1 0−1
1 → 0 1−1 1 0−1

−1 → 1−1

Note that β is the map obtained from ζ by equating 0 and 0′, which is meaningful because
ζ(0) = ζ(0′). Then from Lemma 6 we get

τ(ϕn(0)) = βn(0) (8)

for all n ≥ 0.

Now form the word v from w by taking the running sum. More precisely, define v[i] =
∑

0≤j≤i w[j]. We first observe that v takes its values over the alphabet {0, 1}: From Eq. (8)
we see that w = βω(0). But the image of each letter under β sums to 0, and furthermore, the
running sums of the image of each letter are always either 0 or 1. From this the statement
about the values of v follows.

Let xx′ be a factor of w beginning at position i, with |x| = n, |x′| = n′. Then w[i..i+n−1]
has the same sum s as w[i + n..i + n + n′ − 1] if and only if v[i + n + n′ − 1] − v[i + n −
1] = v[i + n − 1] − v[i − 1] = s. In other words, w[i..i + n − 1] has the same sum s as
w[i + n..i + n + n′ − 1] if and only if v[i],v[i + n], and v[i + n + n′] form an arithmetic
progression with common difference s. However, since v takes its values in {0, 1}, this is
only possible if s = 0.

Corollary 7. For every k ≥ 3, there exists a squarefree infinite word over {0, 1, . . . , k − 1}
avoiding all factors of the form xx′ with

∑

x =
∑

x′ = a for all a 6≡ 0 (mod k).

Proof. Take the word w = βω(0) constructed above, and map −1 to k − 1.

4 Upper and Lower Bounds

We call a word of the form x1x2 · · · xr where |x1| = |x2| = · · · = |xr| and
∑

x1 ≡
∑

x2 ≡
· · · ≡

∑

xr (mod k) a congruential r-power (modulo k). As we have seen, the lengths of
words on {0, 1, . . . , k − 1} avoiding congruential r-powers, modulo k, are bounded. We now
consider estimating how long they can be, as a function of r and k.

Our first result uses some elementary number theory to get an explicit lower bound for
congruential 2-powers.

Theorem 8. If p is a prime, there is a word on {0, 1, . . . , p− 1} of length at least p2− p− 1
avoiding congruential 2-powers (modulo p).
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Proof. All arithmetic is done modulo p. Let c be an element of order (p− 1)/2 in (Z/(p))∗.
If p ≡ 5, 7 (mod 8), let a be any quadratic residue of p. If p ≡ 1, 3 (mod 8), let a be any
quadratic non-residue of p. Let e(k) = ck + ak2 for 1 ≤ k ≤ p2 − p, and define f as the first
difference of the sequence of e’s; that is, f(k) = e(k+1)− e(k) for 1 ≤ k ≤ p2− p− 1. Then
we claim that the word f = f(1)f(2) · · · f(p2 − p− 1) avoids congruential squares (mod p).

To see this, assume that there is a congruential square in f . Then the sequence e would
have three terms where the indices and values are both in arithmetic progression, say k, k+r,
and k+ 2r. Then (ck+r + a(k+ r)2)− (ck + ak2) = (ck+2r + a(k+ 2r)2)− (ck+r + a(k+ r)2).
Simplifying, we get

ck(cr − 1)2 = −2ar2. (9)

If cr 6≡ 1 (mod p), then
ck/(−2a) ≡ (r/(cr − 1))2 (mod p). (10)

Now the right-hand side of (10) is a square (mod p), so the left-hand side must also be a
square. But ck is a square, since c = g2 for some generator g. So −2a must be a square. But
if p ≡ 1, 3 (mod 8), then −2 is a square mod p, so −2a is not a square. If p ≡ 5, 7 (mod 8),
then −2 is a nonsquare mod p, so −2a is again not a square.

Hence it must be that cr ≡ 1 (mod p). Since we chose c = g2 for some generator g, this
means that r is a multiple of (p− 1)/2, say r = j(p− 1)/2. Then the left-hand side of (9) is
0 (mod p), while the right hand side is −aj2(p − 1)2/2. If this is 0 (mod p), we must have
j ≡ 0 (mod p). So j ≥ p. Then 2r is ≥ p(p− 1). This gives the lower bound.

We now turn to some asymptotic results. For the remainder of this section, as is typical
in the Ramsey theory literature [10], we use the language of colorings: instead of saying the
ith letter of a string x is j, we’ll interpret it as coloring the integer i with color j.

We first investigate the growth rate, as k → ∞, of the minimum integer n such that
every word of length n over {0, 1, . . . , k − 1} has a congruential 2-power modulo k.

We start with some definitions. Let Ω(3, k) be the smallest integer n such that every
set {x1, x2, . . . xn} with xi ∈ [(i− 1)k + 1, ik] contains a 3-term arithmetic progression. Let
L(k) be the minimum integer n such that every k-coloring of [1, n] that uses the colors
0, 1, . . . , k − 1 admits a congruential 2-power (modulo k). Let w(k, r) be the classical van
der Waerden number, that is, the least positive integer w such that for all n ≥ w, every
r-coloring of {1, 2, . . . , n} has an monochromatic arithmetic progression of length k. Finally,
let w1(3, k) be the minimum integer n such that every 2-coloring of [1, n] admits either a
3-term arithmetic progression of the first color, or k consecutive integers all with the second
color.

Lemma 9. For any k ∈ N, we have L(k) ≥ Ω
(

3,
⌊

k
2

⌋)

− 1.
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Proof. Consider a maximally valid set of size n = Ω
(

3,
⌊

k
2

⌋)

−1, i.e., a largest set that avoids
3-term arithmetic progressions. Let S = {s1 < s2 < · · · < sn} be this set. Construct the
difference set D = {d1, d2, . . . , dn−1} = {s2 − s1, s3 − s2, . . . , sn − sn−1} so that |D| = n− 1.
Note that for any d ∈ D we have d ∈ [1, k − 1] (so that 0 is not used in this construction).
We claim that D has no congruential 2-power. Assume, for a contradiction, that it does.
Let

∑y

i=x di ≡
∑2y−x+1

y+1 di (mod k). Then, by construction of D, we have

y
∑

i=x

di = sy+1 − sx and

2y−x+1
∑

y+1

di = s2y−x+2 − sy+1.

Hence,
2sy+1 ≡ s2y−x+2 + sx (mod k). (11)

Since x, y + 1, 2y − x + 2 are in arithmetic progression, the number of intervals between sx

and sy+1 is the same as the number of intervals between sy+1 and s2y−x+2. Hence,

y
∑

i=x

di = sy+1 − sx ∈
[

(y − x)

⌊

k

2

⌋

+ 1, (y − x+ 2)

⌊

k

2

⌋

− 1

]

and
2y−x+1
∑

y+1

di = s2y−x+2 − sy+1 ∈
[

(y − x)

⌊

k

2

⌋

+ 1, (y − x+ 2)

⌊

k

2

⌋

− 1

]

.

Since the length of each of these intervals is the same and is at most k − 1, we see that
(11) is satisfied as an equality. Hence, sx, sy+1, s2y−x+2 is a 3-term arithmetic progression in
S, a contradiction. Thus, L(k) > |D| = n− 1 = Ω(3, k)− 2 and we are done.

Continuing, we investigate the growth rate of L(k) through Ω(3, k). We have the following
result.

Lemma 10. For all k ∈ N, w1(3, k) ≤ kΩ(3, k).

Proof. Let m = Ω(3, k) and let n = km. Let χ be any (red, blue)-coloring of [1, n]. Assume
there are no k consecutive blue integers. So, for each i, 1 ≤ i ≤ m, the interval [(i−1)k+1, ik]
contains a red element, say ai. Then, by the definition of Ω(3, k), there is a 3-term arithmetic
progression among the ai’s.

Recently, Ron Graham [6] has shown the following.

Theorem 11. (Graham) There exists a constant c > 0 such that, for k sufficiently large,
w1(3, k) > kc log k.

12



As a corollary, using Lemma 10, we have

Corollary 12. There exists a constant c > 0 such that, for k sufficiently large, Ω(3, k) >
kc log k.

Proof. From Theorem 11 and Lemma 10 we have, for some d > 0,

Ω(3, k) ≥ w1(3, k)

k
> kd log k−1 > k

d
2

log k.

Taking c = d
2
gives the result.

We now apply Corollary 12 to Lemma 9 to yield the following theorem, which states that
L(k) grows faster than any polynomial in k.

Theorem 13. There exists a constant c > 0 such that, for k sufficiently large, L(k) > kc log k.

Proof. We have (suppressing constant terms)

L(k) ≥ Ω

(

3,

⌊

k

2

⌋)

>

(

k

2

)d log k
2

for some d > 0, provided k is sufficiently large. Since k
2
>
√
k for k > 4 this gives, for

sufficiently large k,

L(k) > k
d
2

log k
2 > k

d
4

log k.

Taking c = d
4
yields the result.

We now turn from congruential 2-powers to the more general case of congruential t-
powers. To this end, define L(k, t) to be the minimum integer n such that every k-coloring
of [1, n] using the colors 0, 1, . . . , k − 1 admits a congruential t-power modulo k.

Adapting the proof of Lemma 9 to this setting, we immediately get

Lemma 14. For any k, t ∈ N, we have L(k, t) ≥ Ω
(

t+ 1,
⌊

k
2

⌋)

− 1.

Now, a result due to Nathanson [12] gives us the following result.

Theorem 15. For any k, t ∈ Z+, we have

Ω

(

t+ 1,
⌊k

2

⌋

)

≥ w

(

⌈2t

k

⌉

+ 1;
⌊k

2

⌋

)

.
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When k = 4, this gives us the following.

Corollary 16. For any t ∈ Z+ we have L(4, t) ≥ w
(⌈

t
2

⌉

+ 1; 2
)

− 1.

Hence, this says, roughly, that L(4, 2`) serves as an upper bound for the classical van der
Waerden number w(`, `).

A recent result of Bourgain [1] implies the bound w(3; k) = o(kck3/2

) for some constant
c > 0.

Hence, for sufficiently large k, there exist constants c, d > 0 such that

kc log k < L(k) < kdk3/2

so that we have a very rough idea of the growth rate.

5 Computational Results

As we have seen, the known upper bounds on van der Waerden numbers provide upper
bounds for the length of the longest word avoiding congruential powers. We also did some
explicit computations. We computed the length l(r, k) of the longest word over Σk avoiding
congruential r-powers (modulo k), for some small values of k and r, and the lexicographically
least such longest word xr,k. The data are summarized below.

r k l(r, k) xr,k

2 2 3 010
2 3 7 0102010
2 4 16 0130102013101201
2 5 33 010214243213143040102142432131430
2 6 35 01024021240241402401024021240241402
2 7 47 01021614636032312426404301021614636032312426404
3 2 9 001101100
3 3 67 0010210112021200102022121011202120010201012101120212001021002210112

4 2 88 0011000110001001110010001100011000100111001000110001100010011100100011000110001001110011

It remains an interesting open problem to find better upper and lower bounds on the
length of the longest word avoiding congruential powers.

Note added in proof (November 10 2010): Recently, Cassaigne, Richomme, Saari, & Zamboni
[2] have found results similar to, but stronger than, our Theorem 2.
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[16] A. Thue. Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske vid. Selsk. Skr. Mat.
Nat. Kl. 1 (1912), 1–67. Reprinted in Selected Mathematical Papers of Axel Thue, T. Nagell, editor,
Universitetsforlaget, Oslo, 1977, pp. 413–478.

[17] B. L. van der Waerden. Beweis einer Baudet’schen Vermutung. Nieuw Archief voor Wiskunde 15

(1927), 212–216.

16


