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1 Introduction

The area of discrete optimization has had many fruitful interactions with the areas of linear
programming and graph theory. One of the main approaches starts with a 0,1 integer program-
ming formulation of the given discrete optimization problem, focuses on its linear programming
relaxation, and works towards better and better approximations of the convex hull of integer
solutions of the linear programming relaxation.

Let P ⊆ [0, 1]n be the polytope representing the feasible region of the linear programming
relaxation of the given discrete optimization problem. Let us denote the convex hull of integer
points in P by PI :

PI := conv (P ∩ {0, 1}n) .

Polyhedral lift-and-project methods start from a description of P for which linear program-
ming is easy or at least tractable (e.g., either P is given by an explicit list of linear inequalities,
or a polynomial time separation oracle for P is available) and “generate” a sequence of polytopes
converging to PI in at most n major steps. Usually, each major step (iteration) of a lift-and-
project method is described by an operator on the space of polytopes. In this paper, we focus
on two polyhedral lift-and-project methods whose operators are denoted by N0(·) and N(·).

Let P ⊆ [0, 1]n be a polytope. We define a polyhedral convex cone K(P ) ⊂ Rn+1 corre-
sponding to P ,

K(P ) := cone
{(

1
x

)
: x ∈ P

}
.

We will refer to the special, homogenizing coordinate as the zeroth coordinate. If P = {x ∈ Rn :
Ax ≤ b} for A ∈ Rm×n and b ∈ Rm and P is nonempty, then

K(P ) =
{(

x0

x

)
∈ Rn+1 : Ax ≤ x0b

}
.

We denote by ej the jth unit vector of suitable size (the size is determined by the context). To
approximate PI better, we can define another polyhedral relaxation of it in the lifted, matrix
space:

M0(P ) :=
{
Y ∈ R(n+1)×(n+1) : diag(Y ) = Y e0 = Y T e0,

Y ej , Y (e0 − ej) ∈ K(P ), ∀j ∈ {1, 2, . . . , n}} .

We project back onto the original space of P and obtain our next relaxation:

N0(P ) :=
{
x ∈ Rn : ∃Y ∈M0(P ), Y e0 =

(
1
x

)}
.

Note that in the above definition of N0, if we require matrix Y to be symmetric, we still end up
with a polytope containing PI and contained in N0(P ). So, we also define

M(P ) :=
{
Y : Y ∈M0(P ), Y = Y T

}
,

and

N(P ) :=
{
x ∈ Rn : ∃Y ∈M(P ), Y e0 =

(
1
x

)}
.
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These two lift-and-project operators, N(·) and N0(·), were proposed by Lovász and Schrijver
[16]. Independently of [16], Sherali and Adams also proposed and studied similar lift-and-
project operators [19] (also see Sherali and Adams [18] for various generalizations and wide
applications). There are many related lift-and-project operators; for work in the early 1970’s
see Balas [4] and Balas, Ceria and Cornuéjols [5]; for a more recently proposed operator, see
Bienstock and Zuckerberg [7]. For comparisons among various lift-and-project operators (and
in some cases valid inequalities obtained from other procedures) see [8, 9, 10, 12, 13].

One of the main application areas for lift-and-project methods has been the packing/covering
type discrete optimization problems (see [1, 2, 6, 11, 17, 20, 21]). Here, we focus on a very well-
known problem from this family. We let STAB(G) denote the stable set polytope of G, which
is the convex hull of the incidence vectors of the stable sets of G. Some of the most popular
applications of lift-and-project methods in the literature have been based on the polyhedral
relaxations of the stable set polytope.

Perhaps the simplest approximation to STAB(G) obtained from the linear programming
relaxation of an integer programming formulation is FRAC(G), the fractional stable set polytope
of a graph G:

FRAC(G) :=
{
x ∈ [0, 1]V (G) : xu + xv ≤ 1, ∀ {u, v} ∈ E(G)

}
,

where V (G), E(G) denote the node set and the edge set of graph G respectively. For every
graph G, STAB(G) is precisely the convex hull of integer points in FRAC(G). In general,
FRAC(G) 6= STAB(G) unless G is bipartite.

Let Nk
0 (G) (resp. Nk(G)) denote the polytope we obtain from applying N0 (resp. N)

successively to FRAC(G) k times. Lovász and Schrijver [16] proved

N0(G) = N(G) = OC(G),

where OC(G) denotes the polytope defined by intersecting FRAC(G) with all the odd-cycle
inequalities for G. Lipták [14] further analyzed the valid inequalities and facets of Nk

0 (G) and
Nk(G), for k ≥ 2. Many of the existing results in the area showed that Nk

0 (G) and Nk(G)
exhibited similar behaviour (see [16, 14, 15]). Lipták and the second author conjectured that

N -N0 Conjecture [15]: for every k ∈ Z+, Nk
0 (G) = Nk(G) for all graphs G.

Here, we provide a counter-example to this conjecture.

2 Preliminaries

Suppose P is given as
P = {x ∈ Rn : Ax ≤ b} ,

where A ∈ Rm×n and b ∈ Rm. We express N0(P ) and N(P ) in terms of the valid inequalities
derived from the system Ax ≤ b. Nullmin(A) denotes the minimal elements (with respect to their
support) in the null space of A. (In other words, this is the set of minimal linear dependencies
among the columns of A.) We denote by Aj the jth column of A and A \Aj denotes the m-by-
(n− 1) matrix obtained from A by removing its jth column. We are interested in the minimal
elements in the null space of [A \Aj ]

T for each j:

U0(A; j) :=
{
u ∈ Rm : u ∈ Nullmin

(
[A \Aj ]

T
)}

.
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For every u ∈ Rm, we define u−, u+ ∈ Rm by

(u−)i := max{0,−ui}, (u+)i := max{0, ui}

so that u = u+ − u−.

Theorem 1. Let P ⊆ [0, 1]n be given as above. Then,

N0(P ) =
n⋂

j=1

{
x ∈ P : uT (Aj − b)xj + uT

−Ax ≤ uT
−b,∀u ∈ U0(A; j)

}
.

Proof. From the definition of N0, we have x ∈ N0(P ) if and only if ∃X ∈ Rn×n such that

Y :=
(

1 xT

x X

)
∈ M0(P ). The conditions Y ej , Y (e0 − ej) ∈ K(P ) are equivalent to AXj ≤

xjb, A(x−Xj) ≤ (1− xj)b, where we denoted by Xj the jth column of X. Since diag(X) = x,
we can eliminate the variables Xii and write N0(P ) = {x : ∃w,Cx+Dw ≤ f} where

C :=



A1 − b 0 . . . 0
0 A2 − b . . . 0
...

...
. . .

...
0 0 . . . An − b
b A2 . . . An

A1 b . . . An
...

...
. . .

...
A1 A2 . . . b


,

D :=



A \A1 0 . . . 0
0 A \A2 . . . 0
...

...
. . .

...
0 0 . . . A \An

−(A \A1) 0 . . . 0
0 −(A \A2) . . . 0
...

...
. . .

...
0 0 . . . −(A \An)


and f :=



0
0
...
0
b
b
...
b


.

We are interested in a description of N0(P ) in terms of only x, so we define

L :=
{
u ≥ 0 : u ∈ Null(DT )

}
,

and using the theorem of the alternative:

∃w : Dw ≤ f − Cx ⇐⇒ 6 ∃u ≥ 0 : DTu = 0, uT (f − Cx) < 0,

we have N0(P ) =
{
x : uTCx ≤ uT f, ∀u ∈ L

}
. Furthermore, we only have to consider u’s that

are extreme rays of L, as the inequalities they generate imply those generated by all other u’s
in L. Since L is the intersection of a linear subspace and the non-negative orthant, its extreme
rays are exactly the elements which are minimal with respect to their supports.
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Now given u ∈ R2mn
+ , let uj := [ujm+1, ujm+2, . . . , u(j+1)m]T for every j ∈ {1, . . . , 2n}. Then

we see that u ∈ L ⇐⇒ (uj − un+j)T ∈ Null([A \ Aj ]T ), ∀j ∈ {1, . . . , n}. By minimality,
∃j ∈ {1, . . . , n} such that u` = 0 ∀` 6∈ {j, n+ j}. Moreover, either uj = un+j and are both a
multiple of some unit vector, or ∃v ∈ U0(A; j) such that uj = v+, u

n+j = v−.
Finally we consider the inequality uTCx ≤ uT f . In the case when uj = un+j , we get

exactly the inequalities that define P . In the other case, we get vT (Aj − b)xj + vT
−Ax ≤ vT

−b as
claimed.

To characterize N(P ), we define

U(A) :=
{
U ∈ Rm×n :

(
UTA

)
ij

= −
(
UTA

)
ji
,∀i 6= j

}
.

Theorem 2. Let P ⊆ [0, 1]n be given as above. Then,

N(P ) =

x ∈ Rn :

diag(UTA)− UT b+AT
n∑

j=1

(Uj)−

T

x ≤ bT
n∑

j=1

(Uj)− , ∀U ∈ U(A)

 .

Proof. As in the above proof of Theorem 1, we can find matrices C ′, D′ and a vector f ′ such
that N(P ) = {x : ∃w,C ′x+D′w ≤ f ′}. Notice that C ′ = C, f ′ = f and

D′ :=



A \A1 0 0 . . . 0
A1 ⊗ eT1 A \ (A1, A2) 0 . . . 0

...
...

...
. . .

...
A1 ⊗ eTn−2 A2 ⊗ eTn−3 A3 ⊗ eTn−4 . . . A \ (A1, . . . An−1)
A1 ⊗ eTn−1 A2 ⊗ eTn−2 A3 ⊗ eTn−3 . . . An−1 ⊗ eT1
−(A \A1) 0 0 . . . 0
−(A1 ⊗ eT1 ) −(A \ (A1, A2)) 0 . . . 0

...
...

...
. . .

...
−(A1 ⊗ eTn−2) −(A2 ⊗ eTn−3) −(A3 ⊗ eTn−4) . . . −(A \ (A1, . . . An−1))
−(A1 ⊗ eTn−1) −(A2 ⊗ eTn−2) −(A3 ⊗ eTn−3) . . . −(An−1 ⊗ eT1 )


.

In the above, ⊗ denotes the tensor (Kronecker) product and as before, ej denotes the jth unit
vector of suitable size (note that the block columns in D′ contain n − 1, n − 2, . . ., 1 columns
respectively). Also, define L′ :=

{
u ≥ 0 : u ∈ Null(D′T )

}
, then u ∈ L′ ⇐⇒ (ui − un+i)TAj =

−(uj − un+j)Ai for all distinct i, j’s. If we define the matrix U by defining its columns as
Uj := uj − un+j ∀j ∈ {1, . . . , n}, then we have u ∈ L′ ⇐⇒ U ∈ U(A), and the inequality
uTC ′x ≤ uT f ′ is exactlydiag(UTA)− UT b+AT

n∑
j=1

(Uj)−

T

x ≤ bT
n∑

j=1

(Uj)− .

The matrix variables U involved in the above theorems provide certificates of the validity of
an inequality for Nk+1

0 (P ) as a function of the facets of Nk
0 (P ) (similarly for Nk+1(·)). Note
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that if we are trying to generate a cretain type of valid inequality for Nk+1
0 (P ) (or Nk+1(P ))

obeying some linear equations and inequalities, we can write a linear optimization problem in
the U variables and solve it to derive such a valid inequality or to prove that it does not exist.
For example, if we want to derive a valid inequality for Nk+1

0 (P ): aTx ≤ γ such that a ≥ 0,
ai = aj ,∀i, j ∈ J1 (these constraints may be required due to certain symmetries in our P ) and
ai = 2ak, i ∈ J2 (perhaps such constraints may be motivated by adhoc observations on P ) for
some subsets J1, J2 ⊂ {1, 2, . . . , n}, we can express all these conditions as the constraints of
a linear optimization problem whose optimal solution (if it exists) would give a certificate of
the validity of aTx ≤ γ. In full generality, we may require that the coefficients of the valid

inequality lie in a polyhedron defined by F
[
a
γ

]
= h, a ≥ 0. Consider for instance the following

LP problem which tries to compute such u’s (and hence the corresponding valid inequality
aTx ≤ γ) for N0(P ):

min
∑m

i=1 (u−)i + (u+)i ,

F

[
ATu− + (u− + u+)T (Aj − b)ej

bTu−

]
= h,

ATu− + (u− + u+)T (Aj − b)ej ≥ 0,
u− ≥ 0, u+ ≥ 0.

We will soon see examples of such U matrices.
We call a set P ⊆ Rn

+ lower-comprehensive if ∀x ∈ P, 0 ≤ y ≤ x implies y ∈ P. Note that for
every graph G, FRAC(G), OC(G) and STAB(G) are all lower-comprehensive polytopes. More-
over, it is well-known that the operators N(·) and N0(·) preserve the lower-comprehensiveness
of the argument.

For every two dimensional lower-comprehensive polytope P , both operators N and N0 gen-
erate the same sequence of polytopes converging to PI . Since in this simple case, only two
iterations of N0 suffice to reach PI , to conclude that Nk

0 (P ) = Nk(P ) for every k, the following
simple fact is enough.

Proposition 3. For every lower-comprehensive convex set P ⊆ [0, 1]2, N0(P ) = N(P ).

Proof. Lovász and Schrijver [16] gave the following geometric characterization of N0:

N0(P ) =
n⋂

j=1

conv {x ∈ P : xj ∈ {0, 1}} . (1)

Therefore, if P does not contain either [0, 1]T or [1, 0]T , then N0(P ) = PI , and so N0(P ) =
N(P ). Otherwise, we define x̄1 := max

{
x1 : [x1, 1]T ∈ P

}
and x̄2 := max

{
x2 : [1, x2]T ∈ P

}
. If

x̄1 = x̄2 = 0, then again N0(P ) = PI . Otherwise (by equation (1)),

N0(P ) = conv
{[

0
0

]
,

[
1
0

]
,

[
0
1

]
,

1
x̄1 + x̄2 − x̄1x̄2

[
x̄1

x̄2

]}
.

Obviously, N(P ) contains the first three of the above points (since PI does). For the last
one, we see that x̄1 + x̄2 − x̄1x̄2 x̄1 x̄2

x̄1 x̄1 x̄1x̄2

x̄2 x̄1x̄2 x̄2

 ∈M(P ).
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Hence, 1
x̄1+x̄2−x̄1x̄2

[
x̄1

x̄2

]
∈ N(P ) as well. The convexity of N(P ) implies that N(P ) ⊇ N0(P ).

Since the reverse containment always holds by definition, we deduce N0(P ) = N(P ).

So, a natural first response to N -N0 Conjecture would be to wonder whether the property
of lower-comprehensiveness is enough to guarantee equality between N and N0. However, this
is not so even for three-dimensional, lower-comprehensive polytopes as was pointed out in [15].
Below, we give an example.

Example 4. Let P :=
{
x ∈ [0, 1]3 : 3x1 + 3x2 + x3 ≤ 5

}
. Then N0(P ) =

{
x ∈ [0, 1]3 : Ãx ≤ b̃

}
where

Ã :=


2 3 1
3 2 1
1 3 0
3 1 0

 and b̃ :=


4
4
3
3

 .

On the other hand, N(P ) = N0(P ) ∩ {x : 15x1 + 15x2 + 5x3 ≤ 23}. The assignment of
weights on the inequalities of P that induces the latter inequality is (we only list the nonzero
elements of Uij):

i j Uij

3x1 + 3x2 + x3 ≤ 5 1 3
2 3
3 −1

x1 ≤ 1 2 −18

yielding

UTA =

 9 9 3
−9 9 3
−3 −3 −1


which satisfies (UTA)ij = −(UTA)ji ∀i 6= j, and hence U ∈ U(A). The only extreme point in
N0(P ) that violates the inequality 15x1 + 15x2 + 5x3 ≤ 23 is 1

4 [3, 3, 1]T .

3 Counter-examples to the Nk
0 (G) = Nk(G) conjecture

Here we give an example for which N2
0 (G) 6= N2(G), hence disproving the N -N0 Conjecture.

Claim 5. Let G1 be the graph in Figure 1. Then

x̄ :=
1
5

[2, 2, 1, 2, 1, 1, 1]T ∈ N2
0 (G1) \N2(G1).
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Figure 1: A graph G1 such that N2(G1) 6= N2
0 (G1)

Proof. To show that x̄ ∈ N2
0 (G1), we consider the following matrix

1
5



5 2 2 1 2 1 1 1
2 2 0 1 1 0 0 0
2 0 2 0 1 1 1 0
1 1 0 1 0 0 0 0
2 1 1 0 2 0 0 0
1 0 1 0 0 1 0 0
1 0 0 0 0 0 1 0
1 0 0 0 0 0 0 1


.

It is easy to check that every column and the difference of every column with the zeroth column
belong to K(OC(G)). Thus, the matrix above is in M2

0 (G1), and consequently x̄ ∈ N2
0 (G1).

Next, we give a valid inequality of N2(G1) that x̄ violates. Consider the following assignment
of weights on the inequalities:

i j Uij

x3 + x4 + x6 ≤ 1 1 1
x4 + x5 + x6 ≤ 1 2 1
x1 + x2 + x7 ≤ 1 3 −1

4 −1
5 −1
6 −1

x2 + x3 ≤ 1 3 1
x1 + x5 ≤ 1 5 1
x3 + x7 ≤ 1 3 1
x4 + x7 ≤ 1 4 1
x5 + x7 ≤ 1 5 1
x6 + x7 ≤ 1 6 1

Then the inequality generated by U is [3, 3, 1, 1, 1, 1, 4]x ≤ 4, which is not valid for x̄. There-
fore, our claim follows.

Remark 6. The inequality [3, 1, 1, 1, 3, 1, 4]x ≤ 4 is in fact a facet of N2(G1). The other facets
of N2(G1) that are not valid for N2

0 (G1) are [3, 3, 2, 2, 2, 1, 5]x ≤ 5 and [3, 3, 2, 1, 2, 2, 5]x ≤ 5.
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3.1 A perfect graph counter-example

In fact, Claim 5 still holds if we add the edge {3, 5} to the above graph.
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Figure 2: A perfect graph G2 satisfying N2(G2) 6= N2
0 (G2)

The same matrix in the proof of Claim 5 shows that x̄ ∈ N2
0 (G2). However, since E(G1) ⊆

E(G2), FRAC(G2) ⊆ FRAC(G1) and consequently N2(G2) ⊆ N2(G1). Therefore, since x̄ 6∈
N2(G1), x̄ 6∈ N2(G2). The only facet ofN2(G2) that is not valid forN2

0 (G2) is [3, 3, 1, 1, 1, 1, 4]x ≤
4. Note that

N0(G2) = N(G2) = OC(G2) = {x : x satisfies all triangle inequalities in G2}.

Hence, N -N0 Conjecture fails for perfect graphs as well. In the next section, we consider
a weaker conjecture called the Rank Conjecture; as we remind the reader there, the Rank
Conjecture holds for perfect graphs.

4 Polyhedral graph rank conjecture

Given P ⊆ [0, 1]n, we define r(P ) := min
{
k ∈ Z+ : Nk(P ) = PI

}
and call it the N -rank of P .

We similarly define the N0-rank of P , and denote it by r0(P ). We start with an example in
which r(P ) < r0(P ), where P is lower-comprehensive.

Example 7. Consider P :=
{
x ∈ [0, 1]3 : x1 + x2 ≤ 1, 3x1 + 4x3 ≤ 4, 4x2 + 3x3 ≤ 4

}
. We de-

fine U :

i j Uij

4x2 + 3x3 ≤ 4 2 1
3x1 + 4x3 ≤ 4 3 1
x1 + x2 ≤ 1 3 −3

Then

UTA =

0 0 0
0 4 3
0 −3 4


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and the inequality induced by U is x1 + x2 + x3 ≤ 1, which implies that N(P ) = PI . However,
the matrix 

8 4 1 4
4 4 0 0
1 0 1 1
4 0 0 4

 ∈M0(P )

shows that 1
8(4, 1, 4)T ∈ N0(P ), and hence N0(P ) 6= N(P ). In this case (in contrast to Example

4), we have r(P ) = 1 < 2 = r0(P ).

The N0-rank (resp. N -rank) of a graph is the smallest k such that Nk
0 (G) = STAB(G) (resp.

Nk(G) = STAB(G)). Lipták and the second author [15] conjectured: r0(G) = r(G) ∀ graphs G.
This Rank Conjecture is true for bipartite graphs, series-parallel graphs, perfect graphs and odd-
star-subdivisions of graphs in B (defined in [15]—which contains cliques and wheels, among many
other graphs). It is also true for antiholes and graphs that have N0-rank ≤ 2. Recently the
first author proved that the Rank Conjecture holds for all 8-node graphs, and for 9-node graphs
that contain a 7-hole or a 7-antihole as an induced subgraph [3]. However, the Rank Conjecture
stays open. In particular, the question of “whether the gaps we see between N2

0 (G) and N2(G)
for the examples G1, G2 can be magnified for larger graphs to show that the Rank Conjecture
also fails” remains open. Also, interesting in its own right is the further study of these gaps.
For instance, upon defining the gap as

gk(G) := min
{
β ∈ R : βNk(G) ⊇ Nk

0 (G)
}
,

it is easy to verify for the examples of the previous section that g2(G1) = g2(G2) = 1.05. (Indeed,
for every graph G, g0(G) = g1(G) = gr0(G)(G) = 1.) Characterizations of gk would be useful in
other contexts (beyond the stable set polytope and including other lift-and-project operators)
as well.
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