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Abstract. We consider operators acting on convex subsets of the unit hypercube. These
operators are used in constructing convex relaxations of combinatorial optimization problems
presented as a 0,1 integer programming problem or a 0,1 polynomial optimization problem.
Our focus is mostly on operators that, when expressed as a lift-and-project operator, involve
the use of semidefiniteness constraints in the lifted space, including operators due to Lasserre
and variants of the Sherali–Adams and Bienstock–Zuckerberg operators. We study the perfor-
mance of these semidefinite-optimization-based lift-and-project operators on some elementary
polytopes — hypercubes that are chipped (at least one vertex of the hypercube removed by
intersection with a closed halfspace) or cropped (all 2n vertices of the hypercube removed by
intersection with 2n closed halfspaces) to varying degrees of severity ρ. We prove bounds on ρ
where the Sherali–Adams operator (strengthened by positive semidefiniteness) and the Lasserre
operator require n iterations to compute the integer hull of the aforementioned examples, as
well as instances where the Bienstock–Zuckerberg operators require Ω(

√
n) iterations to return

the integer hull of the chipped hypercube. We also show that the integrality gap of the chipped
hypercube is invariant under the application of several lift-and-project operators of varying
strengths.

1. Introduction

A foundational tool in tackling many combinatorial optimization problems is the construction
of convex relaxations. Starting with a 0,1 integer programming formulation of the given problem,
the goal is to find a tractable (whether in practice or theory, hopefully in both) optimization
problem with essentially the same linear objective function, but a convex feasible region. Let
P ⊆ [0, 1]n denote the feasible region of the linear programming relaxation of an initial 0,1
integer programming problem. In our convex relaxation approach, we are hoping to construct a
tractable representation of the convex hull of integer points in P , i.e., the integer hull of P

PI := conv (P ∩ {0, 1}n) .

However, it is impossible to efficiently find a tractable description of PI for a general P (unless
P = NP). So, in many cases we may have to be content with tractable convex relaxations that
are not exact (i.e. strict supersets of the integer hull of P ).
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Lift-and-project methods provide an organized way of generating a sequence of convex relax-
ations of P which converge to the integer hull PI of P in at most n rounds. Minimum number of
rounds required to obtain the integer hull by a lift-and-project operator Γ is called the Γ-rank of
P . The computational success of lift-and-project methods on some combinatorial optimization
problems and various applications is relatively well documented (starting with the theoretical
foundations in Balas’ work in the 1970s [Bal74]; this appeared as [Bal98]), and the majority of
these computational successes come from lift-and-project methods which generate polyhedral
relaxations. While many lift-and-project methods utilize in addition positive semidefiniteness
constraints which in theory help generate tighter relaxations of PI , the underlying convex op-
timization problems require significantly more computational resources to solve, and are prone
to run into more serious numerical stability issues. Therefore, before committing to the usage
of a certain lift-and-project method, it would be wise to understand the conditions under which
the usage of additional computational resources would be well justified. Indeed, this argument
applies to any collection of lift-and-project operators that trade off quality of approximation
with computational resources (time, memory, etc.) required. That is, to utilize the strongest
operators, one needs a better understanding of the class of problems on which these strongest
operators’ computational demands will be worthwhile in the returns they provide.

In the next section, we introduce a number of known lift-and-project operators and some
of their basic properties, with the focus being on the following operators (all of which utilize
positive semidefiniteness constraints):

• SA+ (see [Au14, AT16]), a positive semidefinite variant of the Sherali–Adams operator
SA defined in [SA90];
• Las, due to Lasserre [Las01];
• BZ′+ (see [Au14, AT16]), a strengthened version of the Bienstock–Zuckerberg operator

BZ+ [BZ04].

Then, in Section 3, we look into some elementary polytopes which represent some basic
situations in 0,1 integer programs. We consider two families of polytopes: unit hypercubes that
are chipped or cropped to various degrees of severity. First, given an integer n ≥ 1 and a real
number ρ where 0 ≤ ρ ≤ n, the chipped hypercube is defined to be

Pn,ρ :=

{
x ∈ [0, 1]n :

n∑
i=1

xi ≤ n− ρ

}
.

Similarly, we define the cropped hypercube

Qn,ρ :=

x ∈ [0, 1]n :
∑
i∈S

(1− xi) +
∑
i 6∈S

xi ≥ ρ, ∀S ⊆ [n]

 ,

where [n] denotes the set {1, . . . , n}. These two families of polytopes have been shown to
be bad instances for many lift-and-project methods and cutting-plane procedures (see, among
others, [CCH89, CL01, CD01, GT01, Lau03, Che07, PS10, DP14, KLM15, BDG17]). Moreover,
these elementary sets are interesting in many other contexts as well. For instance, note that each
constraint defining Qn,ρ removes a specific extreme point of the unit hypercube from the feasible
region. In many 0,1 integer programming problems and in 0,1 mixed integer programming
problems, such exclusion constraints are relatively commonly used.

Herein, we show that these sets are also bad instances for the strongest known operators,
extending the previously known results in this vein. In particular, we show the following:
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• The SA+-rank of Pn,ρ is n for all ρ ∈ (0, 1), and is at most n− dρe+ 1 for all ρ ∈ (0, n).

In contrast, we show that L̃S (a simple polyhedral operator defined in [GT01] that is
similar to the LS0 operator due to Lovász and Schrijver [LS91]) requires n iterations to
return the integer hull of Pn,ρ for all non-integer ρ ∈ (0, n− 1).

• The integrality gap of SAk
+ (Pn,ρ) in the direction of the all-ones vector is

1 +
(n− k)(1− ρ)

(n− 1)(n− k + kρ)

for all n ≥ 2, k ∈ {0, 1, . . . , n}, and ρ ∈ (0, 1). Moreover, we show that this integrality

gap is exactly the same, if we replace SA+ by an operator as weak as L̃S.

• The Las-rank of Pn,ρ is n for all ρ ∈
(

0, n2−1
2nn+1−n2−1

]
. This strengthens earlier work by

Cheung [Che07], who showed the existence of such a positive ρ but did not give concrete
bounds.
• The Las-rank of Qn,ρ is n for all ρ ∈

(
0, n+1

2n+2−n−3

)
, and at most n−1 for all ρ > n

2n+1−2
.

• There exist n, ρ where the BZ′+-rank of Pn,ρ is Ω(
√
n), providing what we believe to

be the first example where BZ′+ (and as a consequence, the weaker BZ+) requires more
than a constant number of iterations to return the integer hull of a set.

The tools we use in our analysis, which involve zeta and moment matrices, build on earlier
work by others (such as [Lau03] and [Che07]), and could be useful in analyzing lift-and-project
relaxations of other sets. Finally, we conclude the manuscript by noting some interesting be-
haviour of the integrality gaps of some lift-and-project relaxations.

We remark that preliminary and weaker versions of our results on the Lasserre relaxations
of Pn,ρ and Qn,ρ were published in the first author’s PhD thesis [Au14]. During the writing of
this manuscript, we discovered that Kurpisz, Leppänen and Mastrolilli [KLM15] had obtained
similar and stronger results. In fact, in their work, they characterized general conditions for
when the (n− 1)th Lasserre relaxation is not the integer hull. Using very similar ideas to theirs,
we have subsequently sharpened our results to those appearing in this manuscript.

2. Preliminaries

In this section, we establish some notation and describe several lift-and-project operators
utilizing positive semidefiniteness constraints.

2.1. The operators SA,SA+, SA′+ and LS+. Let F denote {0, 1}n, and define A := 2F , the
power set of F . As shown in [Zuc03], many existing lift-and-project operators can be seen as
lifting a given relaxation P to a set of matrices whose rows and columns are indexed by sets in
A. For more motivation and details on this framework, the reader may refer to [AT16].

We first define the operator SA due to Sherali and Adams [SA90], while introducing the
notation and notions that we shall build upon when we subsequently turn our focus to the more
complicated operators. Given P ⊆ [0, 1]n, define the cone

K(P ) :=

{(
λ
λx

)
∈ Rn+1 : λ ≥ 0, x ∈ P

}
,

where we shall index the extra coordinate by 0. Next, we introduce a family of sets in A that
are used extensively by the operators we will introduce in this paper. Given a set of indices
S ⊆ [n] and t ∈ {0, 1}, we define

S|t := {x ∈ F : xi = t, ∀i ∈ S} .
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Note that ∅|0 = ∅|1 = F . Also, to reduce cluttering, we write i|t instead of {i} |t. Next, given
any integer ` ∈ {0, 1, . . . , n}, we define

A` := {S|1 ∩ T |0 : S, T ⊆ [n], S ∩ T = ∅, |S|+ |T | ≤ `} ,

and

A+
` := {S|1 : S ⊆ [n], |S| ≤ `} .

For instance, A0 = A+
0 = {F},

A1 = {F , 1|1, 2|1, . . . , n|1, 1|0, 2|0, . . . , n|0} ,

and

A+
1 = {F , 1|1, 2|1, . . . , n|1} .

Given a vector y ∈ RA′ where A+
1 ⊆ A′ ⊆ A, we let x̂(y) := (yF , y1|1 , . . . , yn|1)>. We usually

use x̂(y) when we project y from a higher dimension to a vector in Rn+1, and verify its mem-
bership in K(P ). Therefore, sometimes we may also alternatively index the entries of x̂(y) as
(y0, y1, . . . , yn)>.

Finally, let ei denote the unit vector (in the appropriate space) indexed by i (which could be
an integer among {0, 1, . . . , n}, or a set in A; this will be made clear by the context). Then,
given an integer k ∈ [n], we define the operator SAk as follows:

(1) Let ŜA
k
(P ) denote the set of matrices Y ∈ RA

+
1 ×Ak which satisfy all of the following

conditions:
(SA 1) Y [F ,F ] = 1.
(SA 2) Y eα ∈ K(P ), for every α ∈ Ak.
(SA 3) For every S|1 ∩ T |0 ∈ Ak−1,

Y eS|1∩T |0∩j|1 + Y eS|1∩T |0∩j|0 = Y eS|1∩T |0 , ∀j ∈ [n] \ (S ∪ T ).

(SA 4) For all α ∈ A+
1 , β ∈ Ak such that α ∩ β = ∅, Y [α, β] = 0.

(SA 5) For all α1, α2 ∈ A+
1 , β1, β2 ∈ Ak such that α1 ∩ β1 = α2 ∩ β2,

Y [α1, β1] = Y [α2, β2].
(2) Define

SAk(P ) :=

{
x ∈ Rn : ∃Y ∈ ŜA

k
(P ), Y eF =

(
1
x

)}
.

Notice that we have presented the SAk operator differently compared to some of its descrip-
tions in the literature, as this broader framework (of lifting a set to matrices whose rows and
columns are indexed by sets in A) is needed when we later study the more complex operators
(such as the Bienstock–Zuckerberg variants). To see the correspondence between the traditional
description of the SAk operator (in terms of linearizing polynomial inequalities of the input
relaxation P ) and ours, suppose we are given an inequality

∑n
i=1 aixi ≤ a0 that is valid for P .

Then if we take disjoint subsets of indices S, T ⊆ [n] such that |S|+ |T | ≤ k, SAk generates the
inequality

(1)

(∏
i∈S

xi

)(∏
i∈T

(1− xi)

)(
n∑
i=1

aixi

)
≤

(∏
i∈S

xi

)(∏
i∈T

(1− xi)

)
a0.

After expanding the products, each term of the form xji (where j ≥ 2) is replaced by xi, and then
each nontrivial product of monomials

∏
i∈U xi by a variable xU to obtain a linear inequality. In
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our definition of SAk, the corresponding linearized inequality is

n∑
i=1

aiY [i|1, S|1 ∩ T |0] ≤ a0Y [F , S|1 ∩ T |0],

which is imposed by (SA 2) on the column of Y indexed by the set S|1∩T |0. Also, in the original
description of SAk, the variable xU is used to represent all appearances of the product

∏
i∈U xi

in the formulation, which could arise when the inequality (1) is generated using multiple choices
of S and T . In our description, this step of identifying all instances of the product

∏
i∈U xi with

the same variable xU is captured by (SA 5).
Observe that, in our description, the lifted space of SAk is a set of matrices with |Ak| =∑k
i=0 2i

(
n
i

)
columns. From the condition (SA 3), we see that many of these columns are linearly

dependent. In fact, for every Y ∈ ŜA
k
(P ), the columns of Y corresponding to the sets in A+

k
always span the column space of Y (the same applies for the columns corresponding to sets
in Ak \ Ak−1). Thus, one could define SAk such that its lifted space consists of matrices with
much fewer columns. We opted to include the “extra” columns because this way each “verify
membership in K(P )” constraint imposed by (SA 2) only involves entries in a single matrix
column in the lifted space, as opposed to linear combinations of up to 2k columns had we only
used columns representing sets in, say, A+

k .
Next, we define two strengthened variants of SA which we call SA+ and SA′+. Let Sn+ denote

the set of n-by-n real, symmetric matrices that are positive semidefinite. Then, given a positive
integer k ∈ [n], we define the operators SAk

+ and SA′k+ as follows:

(1) Let ŜA
k

+(P ) be the set of matrices Y ∈ SAk
+ which satisfy all of the following conditions:

(SA+ 1) Y [F ,F ] = 1.
(SA+ 2) For every α ∈ Ak:

(i) x̂(Y eα) ∈ K(P );
(ii) Y eα ≥ 0.

(SA+ 3) For every S|1 ∩ T |0 ∈ Ak−1,

Y eS|1∩T |0∩j|1 + Y eS|1∩T |0∩j|0 = Y eS|1∩T |0 , ∀j ∈ [n] \ (S ∪ T ).

(SA+ 4) For all α, β ∈ Ak such that α ∩ β = ∅, Y [α, β] = 0.
(SA+ 5) For all α1, α2, β1, β2 ∈ Ak such that α1 ∩ β1 = α2 ∩ β2, Y [α1, β1] = Y [α2, β2].

(2) Let ŜA
′k
+(P ) be the set of matrices in ŜA

k

+(P ) that also satisfy:
(SA′+ 4) For all α, β ∈ Ak such that α ∩ β ∩ P = ∅, Y [α, β] = 0.
(3) Define

SAk
+(P ) :=

{
x ∈ Rn : ∃Y ∈ ŜA

k

+(P ), x̂(Y eF ) =

(
1
x

)}
,

and

SA′k+(P ) :=

{
x ∈ Rn : ∃Y ∈ ŜA

′k
+(P ), x̂(Y eF ) =

(
1
x

)}
.

The operators SAk
+ and SA′k+ are rather similar in nature. First, SAk

+ is a strengthening of the

SAk operator. Not only does it impose all conditions required by SAk, it extends the lifted space
of SAk (which consists of matrices of dimension (n + 1) × Θ(nk)) to a set of Θ(nk)-by-Θ(nk)
symmetric matrices, and imposes an additional positive semidefiniteness constraint on this large

square matrix. Thus, given a set P and a matrix Y in ŜA
k

+(P ), the submatrix of Y with the
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rows corresponding to sets in A1
+ would be in ŜA

k
(P ). Hence, it follows that SAk

+(P ) ⊆ SAk(P ),
for every set P ⊆ [0, 1]n and for every k ≥ 1.

Next, to see that SAk
+(P ) is indeed a relaxation of PI , observe that given any x ∈ P ∩{0, 1}n,

if we define the vector x′ ∈ RAk where

x′[S|1 ∩ T |0] =

{
1 if xi = 1, ∀i ∈ S and xi = 0, ∀i ∈ T ;
0 otherwise,

then it is easy to check that the matrix x′ (x′)> is in ŜA
k

+(P ). Since SAk
+(P ) is a convex set by

construction, it follows that PI ⊆ SAk
+(P ).

As for SA′k+, observe that the condition (SA′+ 4) is more restrictive than (SA+ 4), and thus SA′k+
forces more variables to be zero in the lifted space, and potentially produces a tighter relaxation.
Thus, SA′k+(P ) ⊆ SAk

+(P ). Conversely, it was shown in [Au14] that SA2k
+ (P ) ⊆ SA′k+(P ) in

general (i.e. strengthening SA+ by imposing the additional requirement (SA′+ 4) can only reduce
the lift-and-project rank of any set by a factor of at most 2). We will mostly focus on SA+, and
only use SA′+ for relating the performance of SA+ and the Bienstock–Zuckerberg operators in
certain situations.

Figure 1 illustrates the structure of the lifted spaces of SAk
+ and SA′k+ compared to SAk.

As with SAk, our description of SAk
+ and SA′k+ ensures that the matrices in their lifted spaces

have many linear dependencies among their rows and columns, as this will make our subsequent
analyses of these operators simpler. Similar but weaker versions of SAk

+ have been considered
in the literature, such as the Sherali–Adams SDP operator studied in [CS08] and [BGMT12],
whose positive semidefiniteness constraint is only applied on the A+

1 × A
+
1 symmetric minor

for all k ≥ 1. In contrast, our version of SAk
+ requires the entire Ak × Ak matrix displayed in

Figure 1 to be positive semidefinite.
Finally, LS+, the operator defined in [LS91] that utilizes positive semidefiniteness, is equivalent

to SA1
+. Then if we let LSk+ denote k iterative applications of LS+, it was shown in [AT16] that

SAk
+ dominates LSk+ in general. That is, for every set P ∈ [0, 1]n, PI ⊆ SAk

+(P ) ⊆ LSk+(P ).

2.2. The Lasserre operator. We now turn our attention to the Las operator due to Lasserre
[Las01]. While Las can be applied to semialgebraic sets, we restrict our discussion to its applica-
tions to polytopes contained in [0, 1]n. Gouveia, Parrilo and Thomas provided in [GPT10]
an alternative description of the Las operator, where PI is described as the variety of an
ideal intersected with the solutions to a system of polynomial inequalities. Our presentation
of the operator is closer to that in [Lau03] than to Lasserre’s original description. Given
P := {x ∈ [0, 1]n : Ax ≤ b} (where A is an m-by-n matrix and b ∈ Rm), and an integer k ∈ [n],

(1) Let L̂as
k
(P ) denote the set of matrices Y ∈ S

A+
k+1

+ that satisfy all of the following
conditions:

(Las 1) Y [F ,F ] = 1;

(Las 2) For every i ∈ [m], define the matrix Y i ∈ SA
+
k where

Y i[S|1, S′|1] := biY [S|1, S′|1]−
n∑
j=1

A[i, j]Y [(S ∪ {j})|1, (S′ ∪ {j})|1],

and impose Y i � 0.
(Las 3) For every α1, α2, β1, β2 ∈ A+

k such that α1 ∩ β1 = α2 ∩ β2, Y [α1, β1] = Y [α2, β2].
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(2) Define

Lask(P ) :=

{
x ∈ Rn : ∃Y ∈ L̂as

k
(P ) : x̂(Y eF ) =

(
1
x

)}
.

For all operators Γ considered in this paper, and for every polytope P ⊆ [0, 1]n, we define
Γ0(P ) := P .

We note that, unlike the previously mentioned operators, Las requires an explicit description
of P in terms of valid inequalities. While it is not apparent in the above definition of the Las
operator (as it only uses the variables in the form S|1, instead of the broader family of S|1 ∩T |0
as in operators based on SA), we show that Las does commute with all automorphisms of the
unit hypercube.

Proposition 1. Let L : Rn → Rn be an affine transformation such that {L(x) : x ∈ [0, 1]n} =
[0, 1]n. Then, Lask(L(P )) = L(Lask(P )) for all polytopes P ⊆ [0, 1] and for every positive integer
k.

Proof. Since the automorphism group of the unit hypercube is generated by linear transforma-
tions swapping two coordinates and affine transformations flipping a coordinate, it suffices to
prove that Las commutes with each of these transformations. First, we show that Lask commutes
with the mappings which swap two coordinates. Without loss of generality, we may assume the
coordinates are 1 and 2. Let L1 denote the linear transformation, where

[L1(x)]i :=

 x2 if i = 1;
x1 if i = 2;
xi otherwise.

We also define the map L : A+
k+1 → A

+
k+1 where

L(S|1) :=

 ((S \ {1}) ∪ {2})|1 if 1 ∈ S, 2 6∈ S;
((S \ {2}) ∪ {1})|1 if 2 ∈ S, 1 6∈ S;
S|1 otherwise,

Now suppose x ∈ Lask(P ), with certificate matrix Y ∈ L̂as
k
(P ). We show that L1(x) ∈

Lask(L1(P )). Define Y ′ ∈ SA
+
k+1 such that

Y ′[S|1, T |1] := Y [L(S)|1,L(T )|1], for all S, T ∈ Ak+1.

Then we see that Y ′ is Y with some columns and rows permuted, and thus is positive semidefinite
too. Next, for each a ∈ Rn+1 such that a0 +

∑n
i=1 aixi ≥ 0 is an inequality in the system

describing P , define a′ ∈ Rn+1 where

a′i :=

 a2 if i = 1;
a1 if i = 2;
ai otherwise.
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Then the collection of the derived inequalities a′0 +
∑n

i=1 a
′
ixi ≥ 0 describe L(P ). If this is the

jth inequality describing L(P ), then

Y ′j [S|1, T |1]

= a′0Y
′[S|1, T |1] +

n∑
i=1

a′iY
′[(S ∪ {i})|1, (T ∪ {i})|1]

= a0Y [L(S)|1,L(T )|1] + a2Y [L(S ∪ {1})|1,L(T ∪ {1})|1] + a1Y [L(S ∪ {2})|1,L(T ∪ {2})|1]

+
n∑
i=3

Y [L(S ∪ {i})|1,L(T ∪ {i}))|1]

= a0Y [L(S)|1,L(T )|1] + a2Y [L(S) ∪ {2} |1,L(T ) ∪ {2} |1] + a1Y [L(S) ∪ {1} |1,L(T ) ∪ {1} |1]

+
n∑
i=3

Y [L(S ∪ {i})|1,L(T ∪ {i}))|1]

= Y j [L(S)|1,L(T )|1].

Thus, Y ′j is also Y j with rows and columns permuted, and thus is positive semidefinite. Hence,
we obtain that x̂(Y ′eF ) = L1(x) is in Las(L1(P )).

Next, consider the affine transformations flipping a coordinate (without loss of generality, the
first coordinate). So, we define L2 : Rn → Rn where

[L2(x)]i :=

{
1− x1 if i = 1;
xi otherwise.

Also, for every integer ` ≥ 1, define U (`) ∈ RA
+
` ×A` such that

U (`)[S|1, T |1 ∩W |0] :=

{
(−1)|S\T | if T ⊆ S ⊆ T ∪W ;
0 otherwise.

Now let x ∈ Lask(P ), with certificate matrix Y ∈ L̂as
k
(P ). Define Ȳ ∈ SAk+1 where Ȳ :=

(U (k+1))>Y U (k+1). This time, we let L : A+
k+1 → Ak+1 denote the map where

L(S|1) :=

{
((S \ {1})|1 ∩ 1|0 if 1 ∈ S;
S|1 otherwise,

and let Y ′ ∈ SA
+
k+1 such that

Y ′[S|1, T |1] := Ȳ [L(S)|1,L(T )|1], for all S, T ∈ Ak+1.

Then we see that Y ′ is a symmetric minor of Ȳ = (U (k+1))>Y U (k+1). Since Y � 0, it follows
that Y ′ � 0 as well. Next, for each a ∈ Rn+1 such that a0 +

∑n
i=1 aixi ≥ 0 is an inequality in

the system describing P , define a′ ∈ Rn+1 where

a′i :=

 a0 + a1 if i = 0;
−a1 if i = 1;
ai otherwise.
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Then the collection of the derived inequalities a′0 +
∑n

i=1 a
′
ixi ≥ 0 describe L(P ). If this is the

jth inequality describing L(P ), then

Y ′j [S|1, T |1]

= a′0Y
′[S|1, T |1] +

n∑
i=1

a′iY
′[(S ∪ {i})|1, (T ∪ {i})|1]

= (a0 + a1)Ȳ [L(S)|1,L(T )|1]− a1Ȳ [L(S ∪ {1})|1,L(T ∪ {1})|1]

+
n∑
i=2

Ȳ [L(S ∪ {i})|1,L(T ∪ {i})|1]

= a0Ȳ [L(S)|1,L(T )|1] + a1Ȳ [L(S) ∪ {1} |1,L(T ) ∪ {1} |1]

+
n∑
i=2

Ȳ [L(S) ∪ {i} |1,L(T ) ∪ {i} |1]

= ((U (k))>Y jU (k))[L(S)|1,L(T )|1].

Thus, Y ′j is a symmetric minor of (U (k))>Y jU (k), and thus is positive semidefinite. Therefore,
x̂(Y ′eF ) = L2(x) is in Las(L2(P )). �

2.3. The Bienstock–Zuckerberg operator. In [BZ04], Bienstock and Zuckerberg devised
a positive semidefinite lift-and-project operator (which we denote BZ+ herein) that is quite
different from the previously (pre-2004) proposed operators. In particular, in its lifted space, it
utilizes variables in A that are not necessarily in the form S|1 ∩ T |0, in addition to a number
of other ideas. One such idea is refinement. While BZ+ is defined for any polytope contained
in [0, 1]n, we will restrict our discussion to lower-comprehensive polytopes for simplicity’s sake.
A polytope P is defined to be lower-comprehensive if, given any x ∈ P , every vector y where
0 ≤ y ≤ x is also in P . Note that many natural relaxations of packing-type problems (such as
the stable set problem and maximum matching problem of graphs) are lower-comprehensive.

Let polytope P := {x ∈ [0, 1]n : Ax ≤ b}, where A ∈ Rm×n is nonnegative and b ∈ Rm is
positive (this implies that P is lower-comprehensive; conversely, every n-dimensional lower-
comprehensive polytope in [0, 1]n admits such a representation). Next, given a vector v, let
supp(v) denote the support of v. Also, we define a subset O of [n] to be a k-small obstruction
of P if there exists an inequality a>x ≤ bi in the system Ax ≤ b where

• O ⊆ supp(a);
•
∑

j∈O aj > bi; and

• |O| ≤ k + 1 or |O| ≥ |supp(a)| − (k + 1).

Observe that, given such an obstruction O, the inequality
∑

i∈O xi ≤ |O| − 1 holds for every
integral vector x ∈ P . Thus, if we let Ok denote the collection of all k-small obstructions of the
system Ax ≤ b, then the set

Ok(P ) :=

{
x ∈ P :

∑
i∈O

xi ≤ |O| − 1, ∀O ∈ Ok

}

is a relaxation of PI that is potentially tighter than P . After tightening P with these obstruction
inequalities, BZ+ liftsOk(P ) to a higher space, whose dimensions depend on collections of indices
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called walls and tiers. Define

Wk :=

 ⋃
i,j∈[`],i 6=j

(Oi ∩Oj) : O1, . . . , O` ∈ Ok, ` ≤ k + 1

 ∪ {{1} , . . . , {n}}
to be the collection of walls. That is, each wall is either a singleton set of an index in [n], or is
generated by a subset of up to (k+ 1) k-small obstructions, where a wall is formed by the set of
elements that appear in at least two of the given obstructions. Next, we define the collection of
tiers

Tk :=

S ⊆ [n] : ∃Wi1 , . . . ,Wik ∈ Wk, S ⊆
k⋃
j=1

Wij

 .

That is, a set of indices S is a tier if it is contained in the union of a set of up to k walls. Observe
that since all singleton sets are walls, every subset of [n] of size at most k is a tier.

Next, we present the details of BZ′+, a simplified variant of BZ+ that is shown in [AT16] to
dominate BZ+. Intuitively, BZ′+ is less selective than BZ+ in generating variables, and could
lift P to a lifted space whose dimensions is exponential in n. Since we shall only use BZ′+ to
establish hardness results, the fact that it may not produce tractable relaxations is not a concern
here.

Also, observe that the collections of obstructions, walls and tiers depend on the algebraic
description of a set. Thus, BZ+ and BZ′+ could lift two sets in [0, 1]n (or even two different
systems of inequalities describing the same set) to lifted spaces of different dimensions. In
contrast, the dimensions of the lifted space for all other operators we introduced earlier only
depend on the dimension of the input set P . Bienstock and Zuckerberg showed in [BZ04] that
the adaptivity enables BZ+ to efficiently solve some set-covering type problem instances that
could require exponential effort by the earlier operators.

On the other hand, one can construct instances where the system Ax ≤ b describing the input
set P does not have a single k-small obstruction. In that case, the only walls generated are the
singleton sets, and the tiers are exactly the subsets of indices of size at most k. This is one of the
main ideas we will utilize in showing that BZ′+ performs poorly on certain families of chipped
hypercubes. While we present the full details of BZ′+ below for completeness, the reader should
be aware that many of these details will not be triggered in our subsequent analysis of BZ′+.

While variants based on the SA operator only generate variables of the form S|1 ∩ T |0 in the
lifted space, variables in the BZ′+ formulation can take a more general form. Given a set U ⊆ [n]
and a nonnegative integer r, we define

U |<r :=

{
x ∈ F :

∑
i∈U

xi ≤ r − 1

}
.

Then all variables generated by BZ′+ in the lifted space correspond to S|1∩T |0∩U |<r for disjoint
sets of indices S, T and U . Next, given an integer k ∈ [n], the BZ′+ operator can be described
as follows:

(1) Define A′ to be the set consisting of the following. For each tier S ∈ Tk, include:

(2) (S \ T )|1 ∩ T |0,

for all T ⊆ S such that |T | ≤ k; and

(3) (S \ (T ∪ U))|1 ∩ T |0 ∩ U |<|U |−(k−|T |),
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for every T,U ⊆ S such that U∩T = ∅, |T | < k and |U |+ |T | > k. We say these variables
(indexed by the above sets) are associated with the tier S.

(2) Let B̂Z
′k
+(P ) denote the set of matrices Y ∈ SA′+ that satisfy all of the following conditions:

(BZ′ 1) Y [F ,F ] = 1.
(BZ′ 2) For every column y of the matrix Y ,

(i) 0 ≤ yα ≤ yF , for all α ∈ A′.
(ii) x̂(y) ∈ K(Ok(P )).
(iii) yi|1 + yi|0 = yF , for every i ∈ [n].
(iv) For each α ∈ A′ in the form of S|1 ∩ T |0 impose the inequalities

yi|1 ≥ yα, ∀i ∈ S;(4)

yi|0 ≥ yα, ∀i ∈ T ;(5)

yα + y(S∪{i})|1∩(T\{i})|0 = yS|1∩(T\{i})|0 , ∀i ∈ T ;(6) ∑
i∈S

yi|1 +
∑
i∈T

yi|0 − yα ≤ (|S|+ |T | − 1)yF .(7)

(v) For each α ∈ A′ in the form S|1 ∩ T |0 ∩ U |<r, impose the inequalities

yi|1 ≥ yα, ∀i ∈ S;(8)

yi|0 ≥ yα, ∀i ∈ T ;(9) ∑
i∈U

yi|0 ≥ (|U | − (r − 1))yα;(10)

yα = yS|1∩T |0 −
∑

U ′⊆U,|U ′|≥r

y(S∪U ′)|1∩(T∪(U\U ′))|0 .(11)

(BZ′ 3) For all α, β ∈ A′ such that α ∩ β ∩ P = ∅, Y [α, β] = 0.
(BZ′ 4) For all α1, β1, α2, β2 ∈ A′ such that α1 ∩ β1 = α2 ∩ β2, Y [α1, β1] = Y [α2, β2].

(3) Define

BZ′k+(P ) :=

{
x ∈ Rn : ∃Y ∈ B̂Z

′k
+(P ), x̂(Y eF ) =

(
1
x

)}
.

Again, observe that in the case when the inequalities describing P does not have any k-small
obstructions, every tier S has size at most k. Then all variables generated by BZ′+ would be
through (2), and hence are of the form S|1∩T |0. With no variables generated through (3), many

subsequent conditions (such as (10) and (11)) are not triggered, and matrices in B̂Z
′k
+(P ) have

dimensions Ak ×Ak. In this case, the performance of BZ′+ is comparable to that of SA+:

Proposition 2. If P = {x ∈ [0, 1]n : Ax ≤ b} where Ax ≤ b does not have a single k-small
obstruction, then

SA2k
+ (P ) ⊆ BZ′k+(P ).

Proof. If P does not have a single obstruction, then Ok(P ) = P , every wall is a singleton set
and every tier has size at most k. Since there are no tiers of size greater than k, it is vacuously
true that every tier of size greater than k is P -useless (this concept of P -useless is defined
in [AT16]), and thus by Proposition 4 in [AT16], we obtain that SA′k+(P ) ⊆ BZ′k+(P ). Since

SA2k
+ (P ) ⊆ SA′k+(P ) in general, our claim follows. �

In Figure 2 we provide a comparison of relative strengths of all aforementioned lift-and-
project operators, in addition to BCC, a simple operator defined by Balas, Ceria, and Cornuéjols
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in [BCC93]; and L̃S, a geometric operator studied in [GT01] in their analysis of the Lovász–
Schrijver operators. Each arrow in the figure denotes “is dominated by”, meaning that when
applied to the same relaxation P , the operator at the head of an arrow would return a relaxation
that is at least as tight as that obtained by applying the operator at the tail of the arrow. While
the focus in this paper will be on the performance of SA+,Las and BZ′+, some of our results
also have implications on these other operators. The reader may refer to [AT16] for some more
intricate properties of these operators.

BCC L̃S SA

LS+ SA+ SA′+ BZ+ BZ′+

Las

PSD
Operators

Polyhedral
Operators

Tractable w/ weak separation oracle for P

Tractable w/ facet description of P

Figure 2. A strength chart of some lift-and-project operators.

There are also many other operators whose relative performance can be studied in this wider
context of operators. For example, recently Bodur, Dash and Günlük [BDG16] proposed a

polyhedral lift-and-project operator called Ñ and showed that

LS→ Ñ→ SA2

where LS is a polyhedral operator devised in [LS91] that dominates L̃S.
Considering Figure 2, note that every lower bound that we prove on rank as well as integrality

gaps for Las and BZ′+ imply the same results for all other operators in Figure 2. Similarly, every

upper bound on rank and integrality gaps for L̃S applies to all other operators in Figure 2,
except BCC.

3. Some bad instances for SA+,Las and BZ′+

In this section, we consider several polytopes that have been shown to be bad instances for
many known lift-and-project operators (and cutting plane schemes in general).

3.1. The chipped hypercube Pn,ρ. Recall the chipped hypercube

Pn,ρ :=

{
x ∈ [0, 1]n :

n∑
i=1

xi ≤ n− ρ

}
.

Cook and Dash [CD01] showed that the LS+-rank of Pn,1/2 is n, while Laurent [Lau03] proved
that the SA-rank of Pn,1/2 is also n. Cheung [Che07] extended these results and showed that
both the LS+- and SA-rank of Pn,ρ are n for all ρ ∈ (0, 1). Here, we use similar techniques to
establish the SA+-rank for Pn,ρ. Note that, from here on, we will sometimes use v[i] to denote
the i-entry of a vector v (instead of vi).

Proposition 3. For every n ≥ 2, the SA+-rank of Pn,ρ is n for all ρ ∈ (0, 1).
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Proof. We prove our claim by showing that x̄ :=
(

1− ρ
nρ+1−ρ

)
ē ∈ SAn−1

+ (Pn,ρ) \ (Pn,ρ)I , where

ē denotes the all-ones vector. First,
n∑
i=1

x̄i = n

(
1− ρ

nρ+ 1− ρ

)
= n− nρ

nρ+ 1− ρ
> n− 1,

and so x̄ 6∈ (Pn,ρ)I . We next show that this vector is in SAn−1
+ (Pn,ρ). Define Y ∈ RAn−1×An−1

such that

Y [α, β] :=


1− ρ|S|

nρ+1−ρ if α ∩ β = S|1 for some S ⊆ [n];
ρ

nρ+1−ρ if α ∩ β = S|1 ∩ j|0 for some S ⊆ [n] and j ∈ [n] \ S;

0 otherwise.

We claim that Y ∈ ŜA
n−1

+ (Pn,ρ). First, (SA+ 1) holds as Y [F ,F ] = 1 (since F ∩F = ∅|1). It is

not hard to see that Y ≥ 0, as every entry in Y is either 0, ρ
nρ+1−ρ or 1− kρ

nρ+1−ρ for some integer

k ∈ {0, . . . , n}. Next, we check that x̂(Y eβ) = (Y [F , β], Y [1|1, β], . . . , Y [n|1, β])> ∈ K (Pn,ρ) for
all β ∈ An−1. Given β = S|1∩T |0, x̂(Y eβ) is the zero vector whenever |T | ≥ 2, and is the vector

ρ
nρ+1−ρ(ē− ei) whenever T = {i} for some i ∈ [n].

Finally, suppose β = S|1 for some S ⊆ [n] where |S| = k. Then

x̂(Y eβ)[i] =

{
1− kρ

nρ+1−ρ if i = 0 or i ∈ S;

1− (k+1)ρ
nρ+1−ρ if i ∈ [n] \ S.

Now
n∑
i=1

x̂(Y eβ)[i] = k

(
1− kρ

nρ+ 1− ρ

)
+ (n− k)

(
1− (k + 1)ρ

nρ+ 1− ρ

)
= n

(
1− kρ

nρ+ 1− ρ

)
− ρ

(
n− k

nρ+ 1− ρ

)
≤ (n− ρ)

(
1− kρ

nρ+ 1− ρ

)
= (n− ρ)x̂(Y eβ)[0].

Thus, x̂(Y eβ) ∈ K(P ) in this case as well. Next, it is not hard to see that the entries of Y
satisfy (SA+ 3), (SA+ 4) and (SA+ 5). Finally, to see that Y � 0, let Y ′ be the symmetric minor
of Y indexed by rows and columns from A−n−1 := {S|0 : S ⊆ [n], |S| ≤ n− 1}. Then Y ′ � 0 as

it is diagonally dominant. Next, define L ∈ RAn−1×A−n−1 where

L[S|1 ∩ T |0, U |0] :=

{
(−1)|S| if S ∪ T = U ;
0 otherwise.

Then it can be checked that Y = LY ′L>. Hence, we conclude that Y � 0 as well. This completes
our proof. �

We next show that (0, 1) is the only range of ρ’s for which the SA+-rank of Pn,ρ is n. To
do that, it is helpful to introduce the notion of moment matrices. Given an integer k ≥ 0

and vector y ∈ RA
+
` where ` ≥ min {n, 2k}, we define the matrix Mk(y) ∈ RA

+
k ×A

+
k where

Mk(y)[α, β] := y[α ∩ β] for all α, β ∈ A+
k .

We also need the notion of `-establishment, which was introduced in [AT16] and utilizes the
presence of a certain set of variables in the lifted space, as well as a positive semidefiniteness



ELEMENTARY POLYTOPES WITH HIGH LIFT-AND-PROJECT RANKS 15

constraint, to provide a guarantee on the overall performance of the operator. Suppose Y ∈ SA′

for some A′ ⊆ A. We say that Y is `-established if all of the following conditions hold:

(`1) Y [F ,F ] = 1.
(`2) Y � 0.
(`3) A+

` ⊆ A
′.

(`4) For all α, β, α′, β′ ∈ A+
` such that α ∩ β = α′ ∩ β′, Y [α, β] = Y [α′, β′].

(`5) For all α, β ∈ A+
` , Y [F , β] ≥ Y [α, β].

It follows immediately from the definition of SA+ that all matrices in ŜA
k

+(P ) are k-established,
for all P ⊆ [0, 1]n. Then we have the following:

Proposition 4. For every n ≥ 2 and non-integer ρ ∈ (0, n), the SA+-rank of Pn,ρ is at most
n− dρe+ 1.

Proof. Let P := Pn,ρ. First, let ` := n−dρe. Observe that every matrix Y ∈ ŜA
`+1

+ (P ) is (`+1)-
established (and thus `-established), and the condition (SA+ 5) guarantees that the symmetric
minor of Y with rows and columns indexed by sets in A+

` is a moment matrix M`(y) for some
vector y.

Now notice that for every set S ⊆ [n] where |S| = ` + 1, the incidence vector of S is not in
P (as `+ 1 > n− ρ). Hence, the condition x̂

(
Y eS|1

)
∈ K(P ) imposed by (SA+ 2) implies that

Y [F , S|1] = 0. Thus, we obtain that Y [S|1, S|1] = 0 for all S ⊆ [n] of size ` + 1, and so the
diagonal entries of the symmetric minor Y ′ of Y indexed by sets in A+

`+1 \ A` are all zero. For

Y to be positive semidefinite, Y ′ must have all zero entries. Thus, we obtain that y[S|1] = 0 for
all sets S where |S| ≥ `+ 1.

Next, if we define Zi :=
∑

S⊆[n],|S|=i y[S|1] for every i ≥ 0, we obtain that Zi = 0 for all i > `.

Then it follows from Corollary 12 in [AT16] that Z1 ≤ `. Since

Z1 =
n∑
i=1

y[i|1] =
n∑
i=1

Y [i|1,F ],

we conclude that
∑n

i=1 xi ≤ ` is valid for SA`+1
+ (P ), and our claim follows. �

Thus, we know that the SA+-rank of Pn,ρ is exactly n when ρ ∈ (0, 1), and the rank is 1 if
ρ ∈ (n − 1, n). When ρ ∈ (n − 2, n − 1), it follows from Proposition 4 that the SA+-rank is at
most 2. Since it is not hard to show that SA1

+ (Pn,ρ) 6= Pn,n−1, we know in this case that the
SA+-rank is exactly 2.

Next, we show that for a weaker operator, the rank of Pn,ρ is always n if it is not integral and
strictly contains the unit simplex. Given integer k ∈ [n] and P ⊆ [0, 1]n, consider the following
operator originally defined in [GT01]:

L̃S
k
(P ) :=

⋂
S⊆[n],|S|=k

conv {x ∈ P : xi ∈ {0, 1} , ∀i ∈ S} .

That is, x is in L̃S
k
(P ) if and only if for every set of indices S of size k, x can be expressed

as a convex combination of points in P whose entries in S are all integral. While L̃S produces
tighter relaxations than BCC, it in turn is dominated by SA and several operators devised by
Lovász and Schrijver in [LS91] (see, for instance, [GT01] for a discussion on this matter). Then
we have the following:

Proposition 5. For every integer n ≥ 2 and for every non-integer ρ ∈ (0, n − 1), the L̃S-rank
of Pn,ρ is n.
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Proof. Let P := Pn,ρ and ` := n − dρe (so PI = Pn,`). We prove our claim by showing that

max
{
ē>x : x ∈ L̃S

n−1
(P )
}
> `.

First, let S = [n − 1], and define ε := min
{
dρe − ρ, `

n−1

}
. Also, given T ⊆ S, let χT denote

the incidence vector of T in {0, 1}n−1. Now consider the point

x̄ :=

 ∑
T⊆S,|T |=`

n− `(
n−1
`

)
(n− ε(n− 1))

(
χT
ε

)+

 ∑
T⊆S,|T |=`−1

`− ε(n− 1)(
n−1
`−1

)
(n− ε(n− 1))

(
χT
1

) .

First, observe that x̄ is a linear combination of the points whose entries in S are integral. Also,(
χT
ε

)
∈ P for all T of size ` (by the choice of ε), and

(
χT
1

)
∈ P for all T of size `− 1 as well.

Furthermore, since ε(n− 1) ≤ `, the weights on these points are nonnegative, and do sum up
to 1. Thus, x̄ is indeed a convex combination of these points. By the symmetry of P and the
definition of L̃S, we can express x̄ as a similar convex combination of points in P for all other

sets S of size n− 1. Thus, this shows that x̄ ∈ L̃S
n−1

(P ).

On the other hand, it is easy to check that x̄ = `(1−ε)+ε
n(1−ε)+ε ē, and thus ē>x̄ > ` and x̄ 6∈ PI .

Hence, we deduce that P has L̃S-rank n. �

Thus, we see that when ρ is close to n − 1, the positive semidefiniteness constraint imposed
by SA+ is in fact helpful in generating the desired facet of the integer hull that can be elusive to
a weaker polyhedral operator until the nth iteration. In contrast, when ρ ∈ (0, 1), the SA+- and

L̃S-rank of Pn,ρ are both n. In fact, we will show in Section 4 that when ρ ∈ (0, 1), SAk
+ (Pn,ρ)

and L̃S
k

(Pn,ρ) have exactly the same integrality gap (with respect to the direction of the all-ones
vector) for every k ≥ 1.

We next give a lower bound on the SA+-rank of Pn,ρ for some cases where ρ > 1, which will
be useful when we later establish a BZ′+-rank lower bound for some of these polytopes. We first
need the following result. Suppose P ⊆ [0, 1]n. Given x ∈ P , let

S(x) := {i ∈ [n] : 0 < xi < 1} .
Also, given x ∈ [0, 1]n and two disjoint sets of indices I, J ⊆ [n], we define the vector xIJ ∈ [0, 1]n

where

xIJ [i] :=

 1 if i ∈ I;
0 if i ∈ J ;
x[i] otherwise.

In other words, xIJ is the vector obtained from x by setting all entries indexed by elements in I
to 1, and all entries indexed by elements in J to 0. Then we have the following useful property
that is inherited by a wide class of lift-and-project operators.

Lemma 6 (Theorem 15 in [AT16]). Let P ⊆ [0, 1]n and x ∈ P . If xIJ ∈ P for all I, J ⊆ S(x)

such that |I|+ |J | ≤ k, then x ∈ SAk
+(P ).

Using Lemma 6, we have the following for the SA+-rank of Pn,ρ:

Proposition 7. For every n ≥ 2, if ρ ∈ (0, n) is not an integer and k < n(dρe−ρ)
dρe , then the

SA+-rank of Pn,ρ is at least k + 1.

Proof. First, observe that

k <
n(dρe − ρ)

dρe
⇐⇒ (n− k)

(
n− dρe

n

)
+ k < n− ρ.
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Thus, there exists ` ∈ R such that (n−k)`+k < n−ρ and ` > n−dρe
n . Consider the point x̄ := `ē.

Since ` > n−dρe
n , x̄ 6∈ (Pn,ρ)I . However, for every pair of disjoint sets of indices I, J ⊆ [n] where

|I|+ |J | ≤ k, we have
n∑
i=1

x̄IJ [i] ≤ (n− k)`+ k < n− ρ,

by the choice of `. Thus, x̄IJ ∈ Pn,ρ for all such choices of I, J . (Note that the first inequality
above follows from the fact that

∑n
i=1 x̄

I
J [i] is maximized by choosing I, J where |I| = k and

J = ∅.) Thus, it follows from Lemma 6 that x̄ ∈ SAk
+ (Pn,ρ). This proves that SAk

+ (Pn,ρ) 6=
(Pn,ρ)I , and hence the SA+-rank of Pn,ρ is at least k + 1. �

Using Proposition 7, we obtain a lower-bound result on the BZ′+-rank of Pn,ρ, establishing
what we believe to be the first example in which BZ′+ (and, as a result, BZ+) requires more
than a constant number of iterations to return the integer hull of a set.

Theorem 8. Suppose an integer n ≥ 5 is not a perfect square. Then there exists ρ ∈ (b
√
nc , d

√
ne)

such that the BZ′+-rank of Pn,ρ is at least
⌊√

n+1
2

⌋
.

Proof. Let P := Pn,ρ. First, choose ε ∈ (0, 1) small enough such that

√
n− 1 <

n (1− ε)
d
√
ne

,

and let ρ := b
√
nc+ ε. Next, let k :=

⌊√
n−1
2

⌋
. Notice that for all n ≥ 5, k+ 1 < ρ < n− (k+ 1),

and so BZ′k+ does not generate any k-small obstructions for P . Thus, we obtain that SA2k
+ (P ) ⊆

BZ′k+(P ) by Proposition 2. Also, from Proposition 7, since 2k ≤
√
n− 1, SA2k

+ (P ) 6= PI . Thus,

the BZ′+-rank of P is at least k + 1 =
⌊√

n+1
2

⌋
. �

We note that the BZ+-rank of Pn,ρ is 1 for every ρ ∈ (0, 1). This is because the set [n] is
a k-small obstruction for every k ≥ 1, and so

∑n
i=1 xi ≤ n − 1 is valid for Ok (Pn,ρ), and the

refinement step in BZ+ already suffices in generating the integer hull of Pn,ρ. More generally,
when k+1 ≥ ρ, every subset of set of [n] of size n−k does qualify as a k-small obstruction, and it
can be shown that BZk+ (Pn,ρ) = (Pn,ρ)I . On the other hand, since BZ+ (and the refined version
BZ′+) dominates SA+, Proposition 4 implies that the BZ+-rank of Pn,ρ is at most n− dρe+ 1.
This implies that, in contrast with other operators (including SA+ and, as we will see, Las), the
BZ+-rank of Pn,ρ is low both when ρ is close to 0 or n.

We next turn to the Las-rank of Pn,ρ. Interestingly, Cheung showed the following in [Che07]:

Theorem 9. (i) For every even integer n ≥ 4, the Las-rank of Pn,ρ is at most n − 1 for all
ρ ≥ 1

n ;

(ii) For every integer n ≥ 2, there exists ρ ∈
(
0, 1

n

)
such that the Las-rank of Pn,ρ is n.

Thus, while the rank of Pn,ρ is invariant under the choice of ρ ∈ (0, 1) with respect to all
other lift-and-project operators we have considered so far, it is not the case for Las. Next, we
strengthen part (ii) of Cheung’s result above, and give a range of ρ where Pn,ρ has Las-rank n
for every n ≥ 2.

Theorem 10. Suppose n ≥ 2, and

0 < ρ ≤ n2 − 1

2nn+1 − n2 − 1
.

Then Pn,ρ has Las-rank n.
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Before we prove Theorem 10, we need some notation and lemmas. Define the matrix Z ∈
RA

+
n×A+

n where

Z[S|1, T |1] :=

{
1 if S ⊆ T ;
0 otherwise.

Z is the zeta matrix of [n]. Note that Z is invertible, and it is well known that its inverse is the

Möbius matrix M ∈ RA
+
n×A+

n where

M [S|1, T |1] :=

{
(−1)|T\S| if S ⊆ T ;
0 otherwise.

Throughout this paper, we will assume that the rows and columns in Z and M are ordered such
that the last row/column corresponds to the set [n]|1. Note that, with such an ordering, the last
column of Z is the all-ones vector. The following relation between zeta matrices and moment
matrices is due to Laurent (see proof of Lemma 2 in [Lau03]):

Lemma 11. Suppose y ∈ RA
+
n . Define u ∈ RA

+
n where

u[S|1] :=
∑
T⊇S

(−1)|T\S|y[T |1].

Then Mn(y) = Z Diag(u)Z>.

Note that we used Diag(u) to denote the diagonal matrix U where U [S|1, S|1] := u[S|1] for all
S ⊆ [n]. Next, the following lemma will be useful for proving Theorem 10, as well as analyzing
the cropped hypercube Qn,ρ later on. Note that it uses very similar ideas to that in [KLM15],
where they characterized general conditions for whenMn−1(w) is positive semidefinite, although
the proof here is simpler as we are specifically focused on the applications to the sets Pn,ρ and
Qn,ρ.

Lemma 12. Let θ ∈ (0, 1) be a fixed number. Define y ∈ RA
+
n such that y[S|1] := θ|S| for all

S ⊆ [n]. Then

(i) Mi(y) � 0 for all i ∈ [n].
(ii) Given any ρ > 0,

(n− ρ)Mn(y)[S|1, T |1]−
n∑
j=1

Mn(y)[(S ∪ {j})|1, (T ∪ {j})|1] =Mn(w)[S|1, T |1]

where w|S|1] := ((n− |S|)(1− θ)− ρ) θ|S| for all S ⊆ [n]. Moreover,

Mn(w) = Z Diag(u)Z>,

where u[S|1] := (n− |S| − ρ)θ|S|(1− θ)n−|S| for all S ⊆ [n].
(iii) If ρ ∈ (0, 1) and

(12) ρ ≤ (n+ 1)θ(1− θ)n

2− [(n− 1)θ + 2] (1− θ)n
,

then Mn−1(w) � 0.

Proof. To prove part (i), it suffices to show that Mn(y) � 0, as Mi(y) is a symmetric minor of
Mn(y) for all i < n. By Lemma 11, Since Mn(y) = Z Diag(v)Z>, where

v[S|1] =
∑
T⊇S

(−1)|T\S|y[T |1] =

n−|S|∑
i=0

(
n− |S|

i

)
(−1)iθ|S|+i = θ|S|(1− θ)n−|S|,
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which is positive for all S ⊆ [n]. Thus, it follows that Mn(y) � 0. For part (ii), we see that

(n− ρ)Mn(y)[S|1, T |1]−
n∑
i=1

Mn(y)[(S ∪ {j})|1, (T ∪ {j})|1]

= (n− ρ)θ|S∪T | −
(
|S ∪ T |θ|S∪T | + (n− |S ∪ T |)θ|S∪T |+1

)
= ((n− |S ∪ T |)(1− θ)− ρ) θ|S∪T |

= Mn(w)[S|1, T |1].

Also, it is not hard to check that
∑

T⊇S(−1)|T\S|w[S|1] = u[S|1] for all S ⊆ [n], and so the last
part of the claim follows from Lemma 11.

Finally, for (iii), let Z̄ and M̄ , respectively, denote the symmetric minor of Z and M with
the row and column corresponding to [n]|1 removed. We also let u′ ∈ An−1

+ denote the vector
obtained from u by removing the entry corresponding to [n]|1. Then by Lemma 11,

Mn(w) = Z Diag(u)Z> =

(
Z̄ ē
0 1

)(
Diag(u′) 0

0 −θnρ

)(
Z̄> 0
ē> 1

)
=

(
Z̄ Diag(u′)Z̄> − θnρēē> −θnρē

−θnρē> −θnρ

)
.

SinceMn−1(w) is the symmetric minor ofMn(w) with the last row and column removed, we ob-

tain thatMn−1(w) = Z̄ Diag(u′)Z̄>−θnρēē>. Notice that u[S|1] = (n−|S|−ρ)θ|S|(1−θ)n−|S| >
0 for all S ⊂ [n], and that M̄ is nonsingular (M̄ is the inverse of Z̄). Hence, [Diag(u′)]−1/2 M̄

is nonsingular and [Diag(u′)]−1/2 M̄ · M̄> [Diag(u′)]−1/2 is an automorphism of the underlying
cone of positive semidefinite matrices. Therefore, Mn−1(w) � 0 if and only if

Y :=
[
Diag(u′)

]−1/2
M̄Mn−1(w)M̄>

[
Diag(u′)

]−1/2

is positive definite. Now observe that Y = I − ρθnξξ>, where ξ := [Diag(u′)]−1/2 M̄ ē. Hence,

(13) Mn−1(w) � 0 ⇐⇒ ρθnξ>ξ < 1.

Next, using the fact that (M̄ ē)[S|1] = (−1)n−|S|−1 for all S ⊂ [n], we analyze ρθnξ>ξ which is
equal to:

ρθn

∑
S⊂[n]

1

u[S|1

 = ρθn

∑
S⊂[n]

1

(n− |S| − ρ)θ|S|(1− θ)n−|S|


=

ρθn

(1− θ)n

(
n−1∑
i=0

1

n− i− ρ

(
n

i

)(
1− θ
θ

)i)

<
ρθn

(1− θ)n

(
n−1∑
i=0

2

(n+ 1)(1− ρ)

(
n+ 1

i

)(
1− θ
θ

)i)

=
2ρθn

(1− ρ)(n+ 1)(1− θ)n

((
1

θ

)n+1

− (n+ 1)

(
1− θ
θ

)n
−
(

1− θ
θ

)n+1
)

=
ρ

1− ρ

(
2 [1− (nθ + 1)(1− θ)n]

(n+ 1)θ(1− θ)n

)
.

Thus, if ρ ≤ (n+1)θ(1−θ)n
2−[(n−1)θ+2](1−θ)n , then Mn−1(w) is positive definite. �
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We are now ready to prove Theorem 10.

Proof of Theorem 10. It is obvious that (Pn,ρ)I = Pn,1 for all ρ ∈ (0, 1). Now suppose we are

given integer n ≥ 2 and 0 < ρ ≤ n2−1
2nn+1−n2−1

. We prove our claim by showing that there exists

θ > n−1
n where θē ∈ Lasn−1 (Pn,ρ).

Define y ∈ RA
+
n where y[S|1] := θ|S| for all S ⊆ [n], then Lemma 12 implies Y :=Mn(y) � 0.

It also implies that Y 1 = Mn−1(w) where w|S|1] = ((n − |S|)(1 − θ) − ρ)θk. To prove our
claim, it suffices to show that there exists θ > n−1

n such that Mn−1(w) � 0. Since our upper

bound on ρ is continuous in θ in a neighbourhood of θ = n−1
n , and the cone of positive definite

matrices is the interior of the cone of positive semidefinite matrices, by (13), it suffices to show
that Mn−1(w) � 0 when θ = n−1

n . Then by letting θ = n−1
n in (12) and simplifying, we obtain

that ρ ≤ n2−1
2nn+1−n2−1

guarantees Mn−1(w) � 0, and the claim follows. �

Let p(n) denote the largest ρ > 0 where Mn−1(y) ∈ L̂as
n−1

(Pn,ρ) for some θ > n−1
n (where

y is defined in the proof of Theorem 10). Figure 3 shows the value of logn(p(n)) for some small
values of n, as well as the lower bound on p(n) given by Theorem 10.

2 4 6 8 10 12

−12

−10

−8

−6

−4

−2

0
n

logn(p(n))

logn(p(n))

Lower bound
by Thm. 10

Figure 3. Computational results and lower bounds for p(n).

3.2. The cropped hypercube Qn,ρ. Next, we turn our attention to the cropped hypercube

Qn,ρ :=

x ∈ [0, 1]n :
∑
i∈S

(1− xi) +
∑
i 6∈S

xi ≥ ρ, ∀S ⊆ [n]

 .

Observe that, for every S ⊆ [n], its incidence vector violates the inequality corresponding to S in
the description of Qn,ρ. Thus, we see that (Qn,ρ)I = ∅. Independently, Cook and Dash [CD01]
and Goemans and the second author [GT01] showed that Qn,1/2 has LS+-rank n. Subsequently,
the authors showed in [AT16] that the SA+-rank of Qn,1/2 is also n. In fact, the results therein

readily imply that SAk
+ (Qn,ρ) = Qn,ρ−k/2 for all ρ ∈ (0, 1/2] and k ∈ [n]. Thus, it follows that

Qn,ρ has SA+-rank n for all ρ ∈ (0, 1/2].
More generally, Pokutta and Schulz [PS10] showed that Qn,1/2 has rank Ω(n/ log(n)) with

respect to any admissible cutting-plane procedure, which is a very broad framework that encom-
passes many well-known methods of generating cutting planes, such as Gomory-Chvátal cuts,
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split cuts, as well as all lift-and-project operators mentioned herein except for the Bienstock–
Zuckerberg variants. Subsequently, instead of applying an admissible cutting-plane procedure
Γ to a set P and obtain a tightened relaxation Γ(P ), Dey and Pokutta [DP14] studied the ver-
ification closure of this procedure — a mechanism that yields a yet stronger (but generally in-
tractable) relaxation δΓ(P ). Their results imply that Qn,1/2 has rank Ω(n) with respect to δ LS+

(the stronger, verification version of LS+). More recently, Bodur, Dash, and G’́unĺ’uk [BDG17]

studied extended LP formulations of a given set, and showed that there exists a set Q̂ ⊆ R2n−1

where the projection of Q̂ onto the first n variables is Qn,1/2, and that LS0(Q̂) = ∅. That is,
while LS0 requires n iterations to return the (empty) integer hull when directly applied to Qn,1/2,
applying it to a suitably constructed extended formulation with (n − 1) extra variables allows
LS0 to reach the integer hull in just one iteration.

We now turn to the Las-rank of the cropped hypercubes. First, Qn,1/2 has been shown to
have Las-rank 1 for n = 2 [Lau03], and 2 for n = 4 [Che07]. While Las depends on the algebraic
description of the initial relaxation, the following observation significantly simplifies the analysis
of the Las-rank of Qn,ρ.

Proposition 13. Suppose n, k are fixed positive integers and ρ ∈ (0, 1). Define the vector

w ∈ RA
+
n where

w[S|1] := (n− |S| − 2ρ)2−|S|−1, ∀S ⊆ [n].

Then Lask (Qn,ρ) 6= ∅ if and only if Mk(w) � 0.

Proof. Suppose Lask (Qn,ρ) 6= ∅, and let Y ∈ L̂as
k

(Qn,ρ). Notice that every automorphism for
the unit hypercube is also an automorphism for Qn,ρ. If we take these 2nn! automorphisms
and apply them onto Y as outlined in the proof of Proposition 1, we obtain 2nn! matrices in

L̂as
k

(Qn,ρ). Let Ȳ be the average of these matrices. Then by the symmetry of Qn,ρ, we know

that Ȳ =Mk(y), where y[S|1] = 2−|S|, ∀S ⊆ [n].

By the convexity of L̂as
k

(Qn,ρ), Ȳ ∈ L̂as
k

(Qn,ρ), and thus satisfies (Las 2) for all of the 2n

equalities defining Qn,ρ. In fact, due to the entries of Ȳ , the matrix Ȳ j is the same for all 2n

inequalities describing Qn,ρ. Thus, using the inequality
∑n

i=1 xi ≤ n−ρ and applying Lemma 12

with θ = 1
2 , we obtain that

Ȳ j [S|1, T |1] = (n− |S ∪ T | − 2ρ)2−|S∪T |−1 =Mk(w)[S|1, T |1]

for all S, T ⊆ [n], |S|, |T | ≤ k. Hence, we deduce that Lask (Qn,ρ) 6= ∅ ⇒Mk(w) � 0.
The converse can be proven by tracing the above argument backwards. First, it follows from

Lemma 12 that Ȳ � 0. Then, again, the matrix Ȳ j is exactly Mk(w) for all 2n inequalities

describing Qn,ρ. Since Mk(w) � 0 by assumption, Ȳ ∈ L̂as
k

(Qn,ρ). Thus, we obtain that
1
2 ē ∈ Lask (Qn,ρ), and so Lask (Qn,ρ) 6= ∅. �

Thus, computing the Las-rank of Qn,ρ reduces to finding the largest k where the matrix
Mk(w) defined in the statement of Proposition 13 is positive semidefinite (which would then
imply that the Las-rank of Qn,ρ is k + 1). Using that, we are able to show the following:

Theorem 14. For every n ≥ 2, let q(n) be the largest ρ where Qn,ρ has Las-rank n. Then

n+ 1

2n+2 − n− 3
≤ q(n) ≤ n

2n+1 − 2
.



22 YU HIN (GARY) AU AND LEVENT TUNÇEL

Proof. We first prove the lower bound. If we let θ = 1
2 in (12), we obtain that ρ ≤ n+1

2n+2−n−3

implies Mn−1(w) � 0 where w[S|1] = (n− |S| − 2ρ)2−|S|−1, ∀S ⊆ [n]. Thus, the claim follows
from Proposition 13.

As for the upper bound, we show that if ρ > n
2n+1−2

, then Qn,ρ has Las-rank at most n − 1.

Define x ∈ RA
+
n where x[S|1] := (−2)|S| for all S ⊆ [n]. Also, let x′ denote the vector in RA

+
n−1

obtained from x by removing the entry corresponding to [n]|1. By Proposition 13, if we let

w[S|1] = (n − |S| − 2ρ)2−|S|−1 for all S ⊆ [n] and show that x′>Mn−1(w)x′ < 0 whenever
ρ > n

2n+1−2
, then Mn−1(w) 6� 0, and our claim follows.

Recall that Mn(w) = Z Diag(u)Z> where u[S|1] = (n − |S| − ρ)2−n for all S ⊆ [n]. Also,

note that (Z>x)[S|1] = (−1)|S| for all S ⊆ [n]. Thus,

x>Mn(w)x = x>Z Diag(u)Z>x

=
∑
S⊆[n]

(
(Z>x)[S|1]

)2
u[S|1]

=

n∑
i=0

(
n

i

)(
(−1)i

)2
(n− i− ρ)2−n

=
(
n2n − n2n−1 − ρ2n

)
2−n

=
n

2
− ρ.

On the other hand,

x>Mn(w)x =
(
x′> (−2)n

)(Mn−1(w) −2−nρē
−2−nρē> −2−nρ

)(
x′

(−2)n

)
=

(
x′>Mn−1(w) + (−1)n+1ρē> −2−nρx′>ē+ (−1)n+1ρ

)( x′

(−2)n

)
= x′>Mn−1(w)x′ + (−1)n+1ρē>x′ + (−1)n+1ρx′>ē+ (−1)n+1(−2)nρ

= x′>Mn−1(w)x′ + (2n − 2) ρ.

(It is helpful to observe that ē>x′ = (−1)n − (−2)n.) Hence, we combine the above and obtain
that

x′>Mn−1(w)x′ =
n

2
− (2n − 1)ρ,

which is negative whenever ρ > n
2n+1−2

. This finishes the proof. �

Therefore, akin to what Cheung showed for Pn,ρ, there does not exist a fixed ρ where Qn,ρ
has Las-rank n for all n. Also, as with Pn,ρ, the Las-rank of Qn,ρ varies under the choice of ρ.
For instance, Figure 4 illustrates the Las-rank for Qn,`/1000 for ` ∈ [500] and several values of n.
The pattern is similar for all other values of n we were able to test — the Las-rank is around n

2

when ρ = 1
2 , and slowly rises to n as ρ approaches 0. Recently, related to the Figure 4, Kurpisz,

Leppänen and Mastrolilli [KLM16] proved that the Lasserre rank of Qn,1/2 is between Ω(
√
n)

and n− Ω(n1/3).
Also, recall that we let q(n) be the largest ρ where Qn,ρ has Las-rank n. It follows from

Theorem 14 that 2n+1

nq(n) is roughly bounded between 1
2 and 1. Note that since Las imposes

as many positive semidefiniteness constraints as there are defining inequalities for the given
relaxation (which there are exponentially many for Qn,ρ), the relaxation Lask (Qn,ρ) is not
obviously tractable, even when k is a constant. Now, computing q(n) requires verifying whether
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Figure 4. The Las-rank of Qn,ρ for varying values of ρ := `/1000, for n ∈ {3, 6, 9, 12}.

Lasn−1 (Qn,ρ) is empty, which by definition of Las is the projection of L̂as
n−1

(Qn,ρ), a set
of matrices of order Ω(2n)× Ω(2n) with Ω(2n) positive semidefiniteness constraints. Instead of
solving the feasibility problem of such a large number of variables and constraints, Proposition 13
uses the symmetries of Qn,ρ (as well as the fact that Las preserves symmetries and commutes
with all automorphisms of the unit hypercube, as shown in Proposition 1) to reduce this task
to checking the positive semidefiniteness of Mn−1(w), a (2n − 1)× (2n − 1) matrix with known
entries. Furthermore, notice that if Mn−1(w) had an eigenvector x with negative eigenvalue,
we could assume that x[S|1] = x[T |1] whenever |S| = |T |, due to the symmetries of the entries
inMn−1(w). Hence, if we define the n-by-n matrix W whose rows and columns are indexed by
{0, 1, . . . , n− 1} such that

W [i, j] :=
∑

S,T⊆[n],|S|=i,|T |=j

Mn−1(w)[S|1, T |1]

= 2−i−j−1n

(
n− 1

i

)(
n− 1

j

)(n−1∑
k=0

(
i
k

)(
j
k

)(
n−1
k

) )− ρ2−i−j
(
n

i

)(
n

j

)( n∑
k=0

(
i
k

)(
j
k

)(
n
k

) )
,

then it follows that Mn−1(w) � 0 if and only if W � 0. This reduction allows us to verify if
Qn,ρ has Las-rank n by simply checking if the n-by-n matrix W is positive semidefinite. Using

the reduction above, we computed 2n+1

nq(n) to within two decimal places for n ∈ {2, 3, . . . , 16}, as

illustrated in Figure 5.
As for the BZ′+-rank of Qn,ρ, it was shown in [BZ04] that Qn,1/2 has BZ-rank 2, where BZ

is a polyhedral operator dominated by BZ+ and BZ′+. Thus, it follows that the BZ′+-rank of
Qn,1/2 is at most 2. However, we remark that, as with the Lasserre operator, the Bienstock–
Zuckerberg operators also require an explicitly given system of inequalities for the input set.
In particular, the run-time of these operators depends on the size of the system (which, again,
is exponential in n in the case of Qn,ρ). Thus, BZk (Qn,ρ) is not obviously tractable, even for
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Figure 5. Computational results and possible ranges for q(n) := min
{
ρ : Lasn−1 (Qn,ρ) 6= ∅

}
.

k = O(1). On the other hand, operators such as SA+,SA and BCC are able to produce tightened
relaxations that are tractable as long as we have an efficient separation oracle of the input set
(which does exist for the cropped hypercube — note that x ∈ Qn,ρ if and only if x ∈ [0, 1]n and∑n

i=1 |xi −
1
2 | ≤

n
2 − ρ).

4. Integrality gaps of lift-and-project relaxations

We conclude this paper by noting some interesting tendencies of the integrality gaps of some
lift-and-project relaxations. First, given a compact, convex set P ⊆ [0, 1]n where PI 6= ∅ and
vector c ∈ Rn, the integrality gap of P with respect to c is defined to be

γc(P ) :=
max

{
c>x : x ∈ P

}
max {c>x : x ∈ PI}

.

The integrality gap gives a measure of how “tight” the relaxation P is in the objective function
direction of c. Here, we show that the integrality gap of Pn,ρ with respect to the all-ones is
invariant under k iterations of several different operators.

Theorem 15. For every integer n ≥ 2, for every ρ ∈ (0, 1) and for every operator Γ ∈{
L̃S,LS+, SA, SA+

}
, we have

γē

(
Γk (Pn,ρ)

)
= 1 +

(n− k)(1− ρ)

(n− 1)(n− k + kρ)
,

for every k ∈ {0, 1, 2, . . . , n}.

Proof. We prove our claim by showing that

(14) max
{
θ : θē ∈ L̃S

k
(Pn,ρ)

}
≥ n− k + (k − 1)ρ

n− k + kρ
≥ max

{
θ : θē ∈ SAk

+ (Pn,ρ)
}
.

Then the result follows from the dominance relationships between the operators. First, the claim
is obvious when k = 0 or when k = n, and thus from here on we assume that k ∈ [n − 1]. Let
P := Pn,ρ. We first prove the first inequality in (14).
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Given θē ∈ L̃S
k
(P ), we know that there exist coefficients aT and vectors vT ∈ [0, 1]n−k for

each T ⊆ [k] where

θē =
∑
T⊆[k]

aT

(
χT
vT

)
.

(Here, χT is the incidence vector of T in {0, 1}k.) Note that the operator L̃S requires that the

aT ’s be nonnegative and sum up to 1. Also, note that

(
χT
vT

)
is in P for all vT ∈ [0, 1]n−k

whenever |T | < k. For T = [k], the constraint ē>x ≤ n− ρ implies that ē>vT ≤ n− k − ρ.
Due to the symmetry of P , given one convex combination of θē, we could obtain many

other convex combinations by applying any permutation on [n] that fixes [k]. If we take the
average of all these combinations, we would obtain a “symmetric” one where aT = aT ′ and
vT = vT ′ whenever |T | = |T ′|, and that vT ’s are all multiples of the all-ones vector. Take such
a combination of θē, and define

ai :=
∑

T⊆[k],|T |=i

aT , vi :=
1(
k
i

) ∑
T⊆[k],|T |=i

vT

for every i = 0, 1, . . . , k. Then observe that

(15) θē =
k∑
i=0

ai

(
i
k ē
viē

)
.

Moreover, note that the ai’s are nonnegative and sum to 1, 0 ≤ vi ≤ 1 for all i < k, and 0 ≤ vk ≤
n−k−ρ
n−k . Thus, (15) is equivalent to saying that the point (θ, θ) ∈ R2 is a convex combination of

the points in the sets
{

( ik , vi) : i ∈ {0, 1, . . . , k − 1} , 0 ≤ vi ≤ 1
}

and
{

(1, vi) : 0 ≤ vi ≤ n−k−ρ
n−k

}
.

It is easy to see that the convex hull of these points in R2 form the polytope illustrated in
Figure 6.

1

1

x1

x2

0

x2 = x1

(
1, n−k−ρn−k

)

(
k−1
k , 1

)
(
n−k+(k−1)ρ
n−k+kρ , n−k+(k−1)ρ

n−k+kρ

)

Figure 6. Reduction of finding max
{
θ : θē ∈ L̃S

k
(Pn,ρ)

}
to two dimensions.

Then it is easy to see that the largest θ where (θ, θ) is contained in the convex hull is obtained
by the convex combination

n− k
n− k + kρ

(
1

n−k−ρ
n−k

)
+

kρ

n− k + kρ

(
k−1
k
1

)
=

(
n−k+(k−1)ρ
n−k+kρ

n−k+(k−1)ρ
n−k+kρ

)
.
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This establishes the upper bound on θ.

Next, we turn to show the second inequality in (14) by proving that n−k+(k−1)ρ
n−k+kρ ē ∈ SAk

+(P )

for every k. First, define y ∈ A+
n where y[S|1] := 1 − |S|ρ

n−k+kρ for every S ⊆ [n]. We first show

that Mn(y) � 0. By Lemma 11, we know that Mn(y) = Z Diag(u)Z> where u is the vector
with entries

u[S|1] =
∑
T⊇S

(−1)|T\S|y[S|1] =

n−|S|∑
j=0

(
n− |S|
j

)
(−1)j

(
1− (|S|+ j)ρ

n− k + kρ

)

=


0 if |S| ≤ n− 2;

ρ
n−k+kρ if |S| = n− 1;

1− nρ
n−k+kρ if S = [n].

Note that 1− nρ
n−k+kρ ≥ 0 ⇐⇒ (n− k)(ρ− 1) ≤ 0, which does hold as n ≥ k and ρ < 1. Hence,

since u ≥ 0, we deduce that Mn(y) � 0, and in particular Mk(y) � 0.

Next, define L ∈ RAk×A+
k where

L[S|1 ∩ T |0, U |1] :=

{
(−1)|S| if S ∪ T = U ;
0 otherwise,

and let Y := LMk(y)L>. We claim that Y ∈ ŜA
k

+(P ). First, Mk(y) � 0 implies that Y � 0.
Also, (SA+ 1) holds as Y [F ,F ] = 1, and it is not hard to see that Y ≥ 0, as every entry

in Y is either 0, ρ
n−k+kρ or 1 − iρ

n−k+kρ for some integer i ∈ {0, . . . , n}. Next, we check that

x̂(Y eβ) ∈ K(P ) for all β ∈ Ak. Given β = S|1 ∩ T |0, x̂(Y eβ) is the zero vector whenever
|T | ≥ 2, and is the vector ρ

nρ+1−ρ(ē − ei) whenever T = {i} for some i ∈ [n]. In both cases,∑n
i=1 Y [i|1, β] ≤ (n− ρ)Y [F , β] easily holds.
Finally, suppose β = S|1 for some S ⊆ [n] where |S| ≤ k. Observe that

Y [α, S|1] =

{
n−k+(k−|S|)ρ

n−k+kρ if α = F or α = i|1 where i ∈ S;
n−k−(k−|S|−1)ρ

n−k+kρ otherwise.

Now
n∑
i=1

Y [i|1, S|1] = |S|
(
n− k + (k − |S|)ρ

n− k + kρ

)
+ (n− |S|)

(
n− k + (k − |S| − 1)ρ

n− k + kρ

)
≤ (n− ρ)

(
n− k + (k − |S|)ρ

n− k + kρ

)
= (n− ρ)Y [F , S|1].

Thus, x̂(Y eβ) ∈ K(P ) in this case as well. Finally, it is not hard to see that the entries of Y
satisfy (SA+ 3), (SA+ 4) and (SA+ 5). This completes our proof. �

Figure 7 illustrates the integrality gaps of SAk
+ (Pn,ρ) for various values of k and ρ in the

case n = 10 (the behaviour is similar for other values of n). In general, when ρ is close to 1,
the gap decreases at an almost-linear rate towards 1. On the other hand, when ρ is small, the
integrality gap of SAk

+ (Pn,ρ) stays relatively close to 1 + 1
n−1 as k increases to n− 1, and then

abruptly drops to 1 at the nth iteration, where we obtain the integer hull. Again, it follows from
Theorem 15 that these gaps would be identical if we replaced SA+ by any operator Γ where
SA+ dominates Γ and Γ dominates L̃S.
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Figure 7. Integrality gaps of SAk
+ (P10,ρ) for various k and ρ.

We also note that Theorem 15 implies Proposition 3. Moreover, the techniques used for

proving the first inequality in (14) can be extended to compute max
{
θ : θē ∈ L̃S

k
(Pn,ρ)

}
for

any non-integer ρ ∈ (0, n), which would imply Proposition 5.
While the integrality gap for Qn,ρ is undefined (as its integer hull is empty for all ρ > 0), we

see a similar distinction between its SA+ and Las relaxations. Note that since all lift-and-project
operators we have studied preserve containment, starting with a tighter initial relaxation might
offer a lift-and-project operator a head start and yield stronger relaxations in fewer iterations.
However, in the case of Qn,ρ, different lift-and-project operators utilize this head start in different

ways. As mentioned earlier, we know that SAk
+ (Qn,ρ) = Qn,ρ−k/2 for all ρ ∈ (0, 1/2] and for all

k = [n]. Thus, given ρ, ρ′ where 0 < ρ < ρ′ ≤ 1
2 ,

SAk
+ (Qn,ρ) = Qn,(ρ+k/2) ⊃ Qn,(ρ′+k/2) = SAk

+

(
Qn,ρ′

)
,

for all k ∈ [n− 1]. However, they still converge to the integer hull in the same number of steps.
On the other hand, as shown in Theorem 13 and Figure 4, starting with a larger ρ can help Las
arrive at the integer hull in fewer iterations, similar to what we saw with Pn,ρ.

Thus, at least in the case of Pn,ρ and Qn,ρ where ρ ∈ (0, 1), all aforementioned operators that
are no stronger than SA+ perform pretty much equally poorly, while deploying Las does achieve
some tangible improvements in rank (at least when ρ is not extremely small). Granted, since
the number of inequalities imposed by most lift-and-project methods are superpolynomial in n
after Ω(log(n)) rounds, an operator managing to return the integer hull in, say, Ω(

√
n) iterations

is already exerting exponential effort. In that case, claiming that this operator performs better
than another that requires (say) Ω(n) rounds is somewhat a moot point in practice, at the time
of this writing.

Of course, there do exist examples where a stronger lift-and-project operator manages to
return a tractable relaxation and outperforms exponential effort by a weaker operator: We
showed in Propositions 4 and 5 that when ρ = n − O(1), SA+ would return the integer hull in
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O(1) iterations, while L̃S requires Ω(n) rounds. Another such instance is the following: Given
a graph G = (V,E), consider its fractional stable set polytope, which is defined as

FRAC(G) =
{
x ∈ [0, 1]V : xi + xj ≤ 1, ∀ {i, j} ∈ E

}
.

When G is the complete graph on n vertices, it is well known that for hierarchies of polyhedral
lift-and-project relaxations (including SA), the integrality gap (with respect to ē) starts at n

2 ,
then gradually decreases, and reaches 1 after Ω(n) iterations. On the other hand, it takes
semidefinite operators such as LS+, SA+ and Las exactly one iteration to reach the stable set
polytope of Kn, and thus the corresponding integrality gaps for these operators would dive from
n
2 to 1 in just one iteration.

This raises the natural question of whether, in general, there is some efficient way where we
could diagnose a given problem and determine the “best” lift-and-project method for the job.
One step in that direction is through studying how various methods perform on different problem
classes. Such studies would hopefully provide us better guidance on when it is worthwhile to
apply an operator that is more powerful but has a higher per-iteration computational cost.

To take this point further, perhaps one could build a shape-shifting operator that adapts to
the given problem in some way. Bienstock and Zuckerberg [BZ04] devised the first operators that
generate different variables for different relaxations (or even different algebraic descriptions of
the same relaxation). They showed that this flexibility can be very useful in attacking relaxations
of some set covering problems. Thus, perhaps tight relaxations for other hard problems can be
found similarly by building a lift-and-project operator with suitable adaptations.
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