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Abstract. We study the lift-and-project relaxations of the stable set polytope of graphs gener-
ated by LS+, the SDP lift-and-project operator devised by Lovász and Schrijver. In particular,
we focus on searching for ℓ-minimal graphs, which are graphs on 3ℓ vertices whose stable set
polytope has rank ℓ with respect to LS+. These are the graphs which are the most challenging
for the LS+ operator according to one of the main complexity measures (smallest graphs with
largest LS+-rank). We introduce the notion of LS+ certificate packages, which is a framework
that allows for efficient and reliable verification of membership of points in LS+-relaxations. Us-
ing this framework, we present numerical certificates which (combined with other results) show
that there are at least 49 3-minimal graphs, as well as over 4000 4-minimal graphs. This marks
a significant leap from the 14 3-minimal and 588 4-minimal graphs known before this work,
with many of the newly-discovered graphs containing novel structures which helps enrich and
recalibrate our understanding of ℓ-minimal graphs. Some of this computational work leads to
interesting conjectures. We also find all of the smallest vertex-transitive graphs with LS+-rank
ℓ for every ℓ ≤ 4.

1. Introduction

We are interested in studying the lift-and-project relaxations of the stable set polytope of
graphs generated by the LS+ operator due to Lovász and Schrijver [LS91]. To better put the
main goals and results of this manuscript into perspective, we need to first briefly introduce the
LS+ operator, as well as what is currently known about the lift-and-project rank of graphs for
the stable set problem. We then describe the problems we aim to address in this work, and
provide a roadmap for how this manuscript is organized at the end of this section.

1.1. The LS+ operator. Given a set P ⊆ [0, 1]n, let

cone(P ) :=

{[
λ
λx

]
: λ ≥ 0, x ∈ P

}
denote the homogenized cone of P . Notice that cone(P ) ⊆ Rn+1, and we will index the new
coordinate by 0. Next, let [n] denote the set {1, 2, . . . , n} for every n ∈ N, and Sn+ denote the set
of real, symmetric n×n positive-semidefinite (PSD) matrices. Alternatively, we will also use the
notation M ⪰ 0 to denote that M is a PSD matrix. We also let ei denote the i-th unit vector
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(which has entry 1 at position i and 0 otherwise), and let diag(M) denote the vector formed by
the diagonal entries of a square matrix M . Then we define

L̂S+(P ) :=
{
Y ∈ Sn+1

+ : Y e0 = diag(Y ), Y ei, Y (e0 − ei) ∈ cone(P ) ∀i ∈ [n]
}
,

and

LS+(P ) :=

{
x ∈ Rn : ∃Y ∈ L̂S+(P ), Y e0 =

[
1
x

]}
.

Given a set P ⊆ [0, 1]n, let PI := conv {P ∩ {0, 1}n} denote the integer hull of P (i.e., PI is the
convex hull of all integral points in P ). A fundamental property of LS+ is that PI ⊆ LS+(P ) ⊆ P
for every P ⊆ [0, 1]n (see, for instance, [AT24b, Lemma 3] for a simple proof). Moreover, if P is
tractable (i.e., polynomial-time separable up to arbitrary precision), then so is LS+(P ). Next,

define LS0+(P ) := P , and then recursively define LSℓ+(P ) := LS+

(
LSℓ−1

+ (P )
)
for every ℓ ≥ 1.

Then LSn+(P ) = PI for every P ⊆ [0, 1]n — i.e., it always takes LS+ no more than n iterations
to tighten a set contained in the n-dimensional hypercube to its integer hull. (The reader may
refer to [LS91] for the proofs of these properties and further discussion about LS+.)

1.2. The stable set problem and LS+-rank of graphs. Given a simple, undirected graph
G := (V (G), E(G)), a set of vertices S ⊆ V (G) is a stable set in G if no two vertices in S are
joined by an edge in G. We then define the fractional stable set polytope of G to be

FRAC(G) :=
{
x ∈ [0, 1]V (G) : xi + xj ≤ 1 ∀ {i, j} ∈ E(G)

}
,

and the stable set polytope ofG to be STAB(G) := FRAC(G)I . Observe that a 0, 1-vector belongs
to STAB(G) if and only if it is the incidence vector of a stable set in G. Also, for convenience, we
will write LSℓ+(G) instead of LSℓ+(FRAC(G)). As discussed above, LSℓ+(G) provides successively
tighter convex relaxations for STAB(G) as ℓ increases. This naturally leads to the notion of the
LS+-rank of G, which is defined to be the smallest integer ℓ where LSℓ+(G) = STAB(G). For
convenience, we also use the notation r+(G) to represent the LS+-rank of G. The notion of rank
also applies to specific inequalities: Given a valid inequality a⊤x ≤ β of STAB(G), its LS+-rank
is the smallest integer ℓ for which it is valid for LSℓ+(G).

It is well-known that FRAC(G) = STAB(G) if and only if G is bipartite, so these are the only
graphs which have LS+-rank 0. Next, given a vector a ∈ Rn, let supp(a) denote the support of
a (i.e., the set of indices i where ai ̸= 0). The following general property of LS+ is helpful for
describing graphs with LS+-rank 1.

Lemma 1. [LS91, Lemma 1.5] Let P ⊆ [0, 1]n, and consider an inequality a⊤x ≤ β where a ≥ 0
and β > 0. If a⊤x ≤ β is valid for {x ∈ P : xi = 1} for every i ∈ supp(a), then it is valid for
LS+(P ).

It follows from Lemma 1 that many families of valid inequalities of STAB(G) are valid for
LS+(G). For example, we say that K ⊆ V (G) is a clique in G if every pair of vertices in K
is joined by an edge in G. It is easy to see that the clique inequality

∑
i∈K xi ≤ 1 is valid for

STAB(G) for every clique K ⊆ V (G), as every stable set can only contain at most one vertex
in K. Observe that, by Lemma 1, clique inequalities are valid for LS+(G). Hence, if we define

CLIQ(G) :=

{
x ∈ [0, 1]V (G) :

∑
i∈K

xi ≤ 1 for every clique K ⊆ V (G)

}
to be the clique polytope of a given graph G, then we have LS+(G) ⊆ CLIQ(G) for every graph G.
Thus, it follows that perfect graphs (i.e., graphs G where STAB(G) = CLIQ(G)) have LS+-rank
at most 1. Likewise, one can use Lemma 1 to show that odd cycle, odd wheel, and odd antihole
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inequalities are also valid for LS+(G). The graphs with LS+-rank 1 are known as LS+-perfect
graphs in the literature. For progress towards a combinatorial characterization of these graphs,
see [BENT13, BENT17, Wag22, BENW23].

Of course, in addition to characterizing graphs whose stable set problem is “easy” to solve
for LS+, it is also insightful to study the graphs which serve as the worst-case instances for
LS+. First, let Kn denote the complete graph on n vertices (we will often use [n] as the vertex
labels for Kn). It follows from the results in [ST99] that the line graph of K2ℓ+1 has LS+-rank
ℓ, giving the first known family of graphs with unbounded LS+-rank. Subsequently, Lipták and
the second author [LT03] proved the following fact.

Theorem 2. [LT03, Theorem 39] For every graph G, r+(G) ≤
⌊
|V (G)|

3

⌋
.

In other words, if we let n+(ℓ) denote the minimum number of vertices among graphs with
LS+-rank ℓ, then Theorem 2 implies that n+(ℓ) ≥ 3ℓ for every ℓ ∈ N. Thus, we say that a
graph is ℓ-minimal if |V (G)| = 3ℓ and r+(G) = ℓ. It is easy to see that K3 is the unique
1-minimal graph. In 2003, Lipták and the second authored showed that there is indeed a 2-
minimal graph (G1,1 from Figure 1), while conjecturing that ℓ-minimal graphs do exist for every
ℓ ≥ 1. Subsequently, Escalante, Montelar, and Nasini [EMN06] showed that G1,2 from Figure 1
is the only other 2-minimal graph, as well as discovered the first known 3-minimal graph (G1,3

from Figure 1).

G1,1 G1,2 G1,3 G1,4

Figure 1. Several known ℓ-minimal graphs due to [LT03, EMN06, AT24a]

One common thread among these known ℓ-minimal graphs is that they can all be obtained
from a complete graph by applying a number of vertex-stretching operations, which we describe
below. Given a graph G and vertex v ∈ V (G), define ΓG(v) := {u : {u, v} ∈ E(G)} to be the
(open) neighborhood of v in G. Then given a vertex v ∈ V (G) and sets A1, . . . , Ak ⊆ ΓG(v)

where
⋃k

j=1Aj = ΓG(v), we define the stretching of v in G by applying the following sequence
of transformations to G:

• replace v by k + 1 vertices: v0, v1, . . . , vk;
• for every j ∈ [k], add an edge between vj and all vertices in {v0} ∪Aj .

We say that a vertex-stretching operation is proper if ∅ ≠ Aj ⊂ ΓG(v) for every j ∈ [k]. Also,
we will call the operation k-stretching when we need to specify k. For example, in Figure 2,
G1 = K6, G2 is obtained from a proper 2-stretching of vertex 5 in G1, and G3 is obtained from
a proper 2-stretching of vertex 6 in G2.

An important property of the vertex-stretching operation in relation to the LS+-rank of a
graph is the following.

Theorem 3. [AT25b, Lemma 2] Let H be obtained from G by stretching a vertex in G. Then
r+(H) ≥ r+(G).
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1

2

3

4

5

6

1

2

3

4

50
5152

6

1

2

3

4

50
5152

60

61

62

G1 G2 G3

Figure 2. Illustrating the vertex-stretching operation

Theorem 3 is noteworthy because the LS+-rank does not always behave well under the con-
ventional graph minor operations. For instance, removing an edge from a graph could increase
its LS+-rank [LT03, Figure 4]. In fact, given a general graph G, there are currently only two
known approaches to construct another graph H where r+(H) ≥ r+(G): Construct H so that
G is an induced subgraph of H, or obtain H by (perhaps iteratively) stretching vertices in G.

While the vertex-stretching operation was first defined in its full generality in [AT25b], more
restrictive variants of this operation had been previously studied. Notable examples include
the type-1 stretching operation (which is a proper 2-stretching where A1 ∩ A2 = ∅) and type-2
stretching operation (which is a proper k-stretching where A1, . . . , Ak are mutually disjoint, with
at least k−1 of these sets having size 1) studied by Lipták and the second author [LT03], who also
proved that these two graph operations are LS+-rank non-decreasing. These graph operations
and other slight variants were also studied in other works — see, for instance, [AEF14, BENT17,
AT24a].

Now, observe that the 2-minimal graphs G1,1 and G1,2 can each be obtained by a proper
2-stretching of a vertex in K4. This gives examples where the LS+-rank of a graph increases
by 1 after a vertex-stretching operation. Likewise, G1,3 can be obtained from taking K5 and
properly 2-stretching two of its vertices, increasing the graph’s LS+-rank from 1 to 3. On the
other hand, we currently do not know of an instance where a single vertex-stretching operation
increases the LS+-rank of a graph by more than 1. This makes the special case of 2-stretching
particularly attractive to study in terms of finding ℓ-minimal graphs, as it could increment the
LS+-rank of the graph while only increasing the number of vertices by two.

These insights motivated the authors’ work in [AT24b, AT24a] In [AT24a], we studied the
properties of the vertex-stretching operation, focusing on when the stretching is proper. In
particular, the following result further highlights an important link between the 2-stretching
operation and ℓ-minimal graphs.

Theorem 4. [AT24a, Theorem 19] Let ℓ ≥ 2 be a positive integer, and let G be an ℓ-minimal
graph. Then must exist a graph H and i ∈ V (H) such that

(i) G is obtained from H by a proper 2-stretching of i, and
(ii) H − i is an (ℓ− 1)-minimal graph.

We also showed the following when it comes to stretching vertices of a complete graph.

Theorem 5. [AT24a, Propositions 21 and 23] Let n ≥ 4 be an integer, and let G be obtained
from Kn by a proper 2-stretching of i ∈ V (Kn). Then

(i) r+(G) = 2.
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(ii) Let H be a graph obtained by a proper 2-stretching of one of i0, i1, i2 ∈ V (G). Then
r+(H) = 2.

That is, while a proper 2-stretching of one of the original vertices i ∈ V (Kn) is guaranteed
to increase the graph’s LS+-rank from 1 to 2, the rank would remain at 2 if we further stretch
any of the three new vertices i0, i1, or i2. These results suggest that a promising approach
of obtaining relatively small graphs with high LS+-ranks is to 2-stretch some of the original
vertices of Kn. Thus, given integers n ≥ 3 and d ≥ 0, let Kn,d denote the set of graphs which
can be obtained from Kn by 2-stretching d of its vertices. Then notice that G1,1, G1,2 ∈ K4,1,
and G1,3 ∈ K5,2. We also discovered what was then the first known 4-minimal graph (G1,4 from
Figure 1) in [AT24a], which does belong to K6,3.

In addition to finding ℓ-minimal graphs, we also looked into the asymptotic behaviour of
n+(ℓ). In [AT24b], we constructed the family of graphs Hk as follows: For every integer k ≥ 3,
define

V (Hk) := {i0, i1, i2 : i ∈ [k]} ,
E(Hk) := {{i0, i1} , {i0, i2} : i ∈ [k]} ∪ {{i1, j2} : i, j ∈ [k], i ̸= j} .
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Figure 3. Several graphs in the family Hk

Figure 3 gives the drawings for Hk for k ∈ {3, 4, 5}. Then we showed the following.

Theorem 6. [AT24b, Theorem 2] For every k ≥ 3, r+(Hk) ≥ 3k
16 .

The graphs Hk gave the first known family of graphs where r+(G) = Θ(|V (G)|), which
is asymptotically tight according to Theorem 2. Also, notice that the graphs Hk are highly
symmetric. In particular, its automorphism group has only two orbits, which was conducive to
the construction of an inductive argument which is based on showing that a two-dimensional
“reduced” certificate satisfies the properties imposed by LS+. Moreover, observe that Hk ∈ Kk,k,
which lends yet more credence to the idea that these stretched cliques are promising candidates
for having high LS+-rank.

More recently, the authors were able to further build on these ideas and prove that ℓ-minimal
graphs indeed exist for every ℓ ∈ N. To describe these results, we need some more notation
related to graphs that are stretched cliques. Given G ∈ Kn,d, we let D(G) ⊆ V (Kn) be the
set of original vertices from Kn which were stretched to obtain G (and thus |D(G)| = d).
Furthermore, for every i ∈ V (Kn), we define the vertices in V (G) associated with i to be i0, i1,
and i2 if i ∈ D(G), and simply the unstretched vertex i otherwise. Observe that every vertex
in G is associated with a unique original vertex in Kn. Also, by the definition of the vertex-
stretching operation, observe that given G ∈ Kn,d and distinct i, j ∈ [n], there must be at least
one edge in G joining a vertex associated with i with a vertex associated with j.



6 YU HIN (GARY) AU AND LEVENT TUNÇEL

Next, define K̂n,d ⊆ Kn,d to be the set of stretched cliques G where, for every distinct i, j ∈
D(G), there is exactly one edge in G that joins a vertex associated with i with a vertex associated

with j. For example. observe thatG3 from Figure 2 does not belong to K̂6,2, sinceD(G3) = {5, 6}
and there are two edges — {51, 62} and {52, 61} — joining vertices associated with 5 and 6. On
the other hand, notice that each of the four known ℓ-minimal graphs from Figure 1 belongs to
K̂ℓ+2,ℓ−1.

Given a graph G, let α(G) denote the size of the largest stable set in G. We also let ē denote
the vector of all-ones (the dimension of which will be clear from the context). For every G ∈ Kn,d,

we have α(G) = d+1 [AT25b, Lemma 4], which implies that the inequality ē⊤x ≤ d+1 is valid
for STAB(G). Also, let ω(G) denote the size of the largest clique in G (usually known as the
clique number of G). Then, we have the following.

Theorem 7. [AT25b, Theorem 19] Let G ∈ K̂n,d where n ≥ 3 and d ≥ 0, and let k :=

max {3, ω(G)}. Then the LS+-rank of ē⊤x ≤ d+ 1 is at least n− k + 1.

Given ℓ ∈ N, observe that every G ∈ K̂ℓ+2,ℓ−1 contains exactly 3ℓ vertices, and Theorem 7
assures that r+(G) = ℓ as long as ω(G) ≤ 3. Using this, we were able to prove the following.

Theorem 8. [AT25b, Theorem 23] For every positive integer ℓ, there are at least 2ℓ−1 non-
isomorphic ℓ-minimal graphs.

While the bound in Theorem 8 is tight for ℓ = 1 and ℓ = 2, the number of ℓ-minimal
graphs likely far exceeds 2ℓ−1 for ℓ ≥ 3. For instance, there are 13 non-isomorphic graphs
in K̂5,2 with ω(G) ≤ 3 (see Figure 4), and it follows from Theorem 7 that they are all 3-
minimal. (These 13 graphs do include G1,3, as well as the 3-minimal graphs discovered earlier

in [AT24a], up to isomorphism.) Moreover, there is at least one graph in K5,2 \ K̂5,2 which is
also 3-minimal [AT25b, Proposition 25]. Likewise, an exhaustive computational search finds

that there are 588 non-isomorphic graphs in K̂6,3 with ω(G) ≤ 3, which include the first known
4-minimal graphs discovered in [AT24a]. Thus, at the time of this writing, there are a total of
14 known 3-minimal graphs and 588 known 4-minimal graphs.

Figure 4. The 13 graphs G ∈ K̂5,2 with ω(G) ≤ 3

Another consequence of Theorem 7 is the discovery of a family of vertex-transitive graphs
with high LS+-rank. Given an odd integer k ≥ 3, the graph Bk is defined with

V (Bk) := {i0, i1, i2, i3 : i ∈ [k]} ,
E(Bk) := {{i0, i1} , {i1, i2} , {i2, i3} , {i3, i0} : i ∈ [k]}∪{

{i0, j2} , {i1, j3} : (j − i) mod k ∈
{
1, 2, . . . ,

k − 1

2

}}
.
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Figure 5. Illustrating the graphs Bk

Figure 5 gives the drawings of Bk for k ∈ {3, 5, 7}. Notice that Bk is vertex-transitive, contains

an induced subgraph in K̂k,k and has clique number 2 (see the proof of [AT25b, Proposition 26]
for more details to these claims). Thus, it follows from Theorem 7 that r+(Bk) ≥ k− 2, and we
have the following.

Theorem 9. For every odd integer ℓ ≥ 1, there exists a vertex-transitive graph G where |V (G)| ≤
4ℓ+ 8 and r+(G) ≥ ℓ.

1.3. Motivation and an outline for this manuscript. With the recent results mentioned
above, we have taken significant steps forward in our quest of understanding of LS+-relaxations
of the stable set polytopes of graphs. Most notably, we now know that n+(ℓ) = 3ℓ for every
ℓ ∈ N, which completely settles the aforementioned conjecture by Lipták and the second author
from 2003. On the other hand, new understanding naturally begets new questions. For instance,
are there also ℓ-minimal graphs beyond those in K̂ℓ+2,ℓ−1 described in Theorem 7? If so, what
common structures do such graphs share? Must these graphs also have a small clique number?
Painting a more complete picture of ℓ-minimal graphs would not only help us better understand
the LS+-relaxations of the stable set polytope of graphs, but these findings could also have
implications on the convex relaxations of related problems in combinatorial optimization, which
may lead to new understanding on the extension complexity of these problems. Also, by virtue
of having the extremal property of being the smallest possible graphs with a given LS+-rank,
ℓ-minimal graphs could also possess other interesting properties that make them useful examples
for other studies in graph theory as well as combinatorial optimization.

Thus, we are interested in performing a computational search for ℓ-minimal graphs, and seeing
what this approach can uncover beyond what was found from previous analyses. Now, given a
graph G on 3ℓ vertices, r+(G) ≤ ℓ follows readily from Theorem 2, and so the main challenge
in proving that G is ℓ-minimal is to show that r+(G) ≥ ℓ. To do so, the standard approach

is to show that there exists x̄ ∈ [0, 1]V (G) where x̄ ∈ LSℓ−1
+ (G) \ STAB(G). In particular,

showing x̄ ∈ LSℓ−1
+ (G) for a specific graph G often involves presenting numerical certificates

which satisfy the conditions imposed by LS+. For example, during the last 25 years, the LS+-
rank lower-bound proofs for G1,1 [LT03], G1,2 [EMN06], G1,3 [EMN06], and G1,4 [AT24a] all
followed this approach.

However, proofs involving such numerical certificates can be prone to both computational
and human error (such as in the case of the initial proof for r+(G1,2) ≥ 2, as pointed out
in [AT24a]). For instance, computer algebra systems and SDP solvers can be numerical unstable
(see for instance [WNM12]), which could lead to the errant conclusion that a matrix with a
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barely-negative eigenvalue is PSD. Also, the traditional print format could be less than ideal for
presenting these certificates, as transferring this data from a computational software to print
during the writing the process (and then vice versa if a reader would like to computationally
verify this data) can be cumbersome, let alone serving as another opportunity for inaccuracies
and errors to seep in. All of these issues are exacerbated as the dimensions of the certificates
increase, especially for the cases ℓ ≥ 3 where we have to verify multiple layers of numerical
certificates due to the recursive nature of the definition of LSℓ+(G).

Therefore, another main goal of this paper is to address these issues raised above by presenting
a framework for a systemic presentation of numerical certificates for LS+-relaxations. Under our
proposed framework, verification of these certificates only depends on whole-number arithmetic,
which can be carried out efficiently and reliably in computational algebra systems. We also
believe that our framework for LS+-relaxations can serve as a template for presenting and
verifying certificates for other convex relaxations and for computational optimization in general.
All numerical certificates presented in this paper are made publicly available [AT25a], so the
interested reader could easily verify our work and perform their own analyses with this data.

The rest of the paper is organized as follows. In Section 2, we discuss the existing tools for
proving LS+-rank bounds. We also introduce the notion of LS+ certificate packages, and provide
an elementary example to illustrate the idea. Sections 3 and 4 are respectively dedicated to our
search for 3-minimal and 4-minimal graphs. In particular, we show that there are at least 49
3-minimal graphs, and at least 4107 4-minimal graphs, which is a significant step forward from
the 14 3-minimal graphs and 588 4-minimal graphs known at the time of this work. We point
out the many interesting properties of these newfound examples, and put into perspective how
their discovery augments and refines our understanding of ℓ-minimal graphs. We also go into
details on our computational search for these graphs, as well as provide some relevant statistics.

We then turn our attention to vertex-transitive graphs in Section 5. In particular, we show
that the smallest vertex-transitive graph with LS+-rank 2, 3, and 4 have 8, 13, and 16 vertices
respectively. Interestingly, these graphs share some structural similarities with stretched cliques.
Finally, we conclude the manuscript by mentioning several future research directions in Section 6.

2. Tools for analyzing LS+-ranks

In this section, we collect a number of tools which are useful in analyzing the LS+-rank of a
graph. We first mention several known relevant results, then describe a framework for presenting
numerical certificates for LS+ relaxations.

2.1. Some useful known tools. First, the following is a well-known property of LS+. (See,
for instance, [AT24b, Lemma 5] for a proof.)

Lemma 10. Let P ⊆ [0, 1]n be a polyhedron, and F be a face of [0, 1]n. Then

LSℓ+(P ∩ F ) = LSℓ+(P ) ∩ F,

for every ℓ ∈ N.

Next, given a graph G and a set of vertices S ⊆ V (G), let G[S] denote the subgraph of G in-
duced by S. The following is an immediate consequence of Lemma 10. (See, for instance, [AT24b,
Lemma 6] for a proof.)

Lemma 11. Let G be a graph. Then r+(G[S]) ≤ r+(G) for every S ⊆ V (G).

Thus, the LS+-rank of an induced subgraph of a graph cannot exceed that of the graph itself.
Another implication of Lemma 10 is the following.
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Lemma 12. For every graph G,

r+(G) = max
{
r+(G[supp(a)] : a⊤x ≤ β is a facet-inducing inequality of STAB(G)

}
.

Proof. (≥) follows immediately from Lemma 11, so it only remains to prove (≤). Let ℓ := r+(G).
If ℓ = 0, then G is bipartite and every induced subgraph must also have LS+-rank 0. Thus,
assume ℓ ≥ 1, and so there exists x̄ ∈ LSℓ−1

+ (G)\STAB(G), which means that there exists a facet-

inducing inequality a⊤x ≤ β of STAB(G) which is violated by x̄. Then, it follows from Lemma 10

that the projection of x̄ onto supp(a) belongs to LSℓ−1
+ (G[supp(a)]) \ STAB(G[supp(a)]), and

thus r+(G[supp(a)]) ≥ ℓ. □

For the sake of brevity, we will slightly abuse terminology and refer to a facet-inducing in-
equality simply as a facet from here on. With Lemma 12, we see that if STAB(G) does not
have a full-support facet, then there exists a proper induced subgraph of G which has the same
LS+-rank as G. This immediately implies that the stable set polytope of an ℓ-minimal graph
must have a full-support facet.

Another situation where one can conclude that r+(G) is realized by a proper subgraph of G
is when the graph contains a cut clique — a clique whose removal from G results in multiple
components. More precisely, we have the following.

Proposition 13. [LT03, Lemma 5] Let G be a graph, and S1, S2,K ⊆ V (G) are mutually
disjoint subsets such that

• S1 ∪ S2 ∪K = V (G);
• K induces a clique in G;
• there is no edge {i, j} ∈ E(G) where i ∈ S1, j ∈ S2.

Then r+(G) = max {r+(G[S1 ∪K]), r+(G[S2 ∪K])}.

Next, given a graph G and S ⊆ V (G), we define

G− S := G[V (G) \ S],

and refer to G− S as the graph obtained from G by the deletion of S. When S = {v}, we will
simply write G− v instead of G−{v} for convenience. Given a vertex v ∈ V (G), we also define

G⊖ v := G− ({v} ∪ ΓG(v)),

and call G⊖ v the graph obtained from G by the destruction of v. The following result relates
the LS+-rank of G to that of subgraphs of G obtained via the deletion or destruction of a vertex
in G.

Theorem 14. For every graph G,

(i) [LS91, Corollary 2.16] r+(G) ≤ max {r+(G⊖ i) : i ∈ V (G)}+ 1;
(ii) [LT03, Theorem 36] r+(G) ≤ min {r+(G− i) : i ∈ V (G)}+ 1.

Finally, given graphs G and H where V (H) = V (G) and E(H) ⊆ E(G), we say that H
is an edge subgraph of G. Observe that FRAC(G) ⊆ FRAC(H) in this case. Also, it follows
readily from the definition of LS+ that the operator preserves containment (i.e., if P ⊆ P ′, then
LS+(P ) ⊆ LS+(P

′)). Hence, we have the following.

Lemma 15. Let H be an edge subgraph of G, and let ℓ be a nonnegative integer.

(i) If a⊤x ≤ β is valid for LSℓ+(H), then a⊤x ≤ β is valid for LSℓ+(G).

(ii) If a⊤x ≤ β is not valid for LSℓ+(G), then a⊤x ≤ β is not valid for LSℓ+(H).
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A useful implication of Lemma 15 is that, if we have a graph G and a valid inequality a⊤x ≤ β
of STAB(G) with LS+-rank ℓ, then every edge subgraph of G where a⊤x ≤ β is valid for its
stable set polytope also has LS+-rank at least ℓ.

2.2. Introducing LS+ certificate packages. We now describe our framework of presenting
numerical certificates for LS+ relaxations in this manuscript. In this section, we focus on certi-
fying the membership of a point in LSℓ+(P ) for the case ℓ = 1, which will help prepare for our
discussion of the cases where ℓ ≥ 2 in subsequent sections.

Given a symmetric matrix Y ∈ Zn×n, we say that matrices U, V,W is a UVW -certificate of
Y if

• the entries of U, V , and W are all integers;
• W⊤ (

U⊤U + V
)
W = kY for some positive integer k;

• V is symmetric and diagonally dominant (i.e.,
∑

j ̸=i |Vij | ≤ Vii for all i ∈ [n]).

Then we have the following elementary fact.

Lemma 16. Suppose Y ∈ Zn×n is a symmetric matrix. Then Y ⪰ 0 if and only if Y has a
UVW -certificate.

Proof. Let Y ⪰ 0 be given, and let d := rank(Y ). If d = 0, then Y is the matrix of all zeros, and
in this case W := In and U, V being the n× n matrix of all zeros would do. Next, assume that
d is positive. Then there exists a symmetric matrix Y ′ ∈ Zd×d that is a principal submatrix of
Y where rank(Y ′) = d. Hence, we can write Y = W⊤

1 Y ′W1 for some rational matrix W1. Next,
let λ be the smallest eigenvalue of Y ′. Observe that Y ′ is positive semidefinite (due to being a
principal submatrix of Y ) and has full rank, and thus Y ′ must be positive definite, which implies
that λ > 0. Then Y ′ − λId ⪰ 0 and so there exists a real matrix U0 where Y ′ = U⊤

0 U0 + λId.
Observe that λId is a positive multiple of the identity matrix, and so we can let U1 be a rational
approximation sufficiently close to U0 such that V1 := Y ′ − U⊤

1 U1 is diagonally dominant and
has rational entries. Now, we have Y = W⊤

1 (U⊤
1 U1 + V1)W1, and one can multiply the rational

matrices U1, V1,W1 by a suitable integer to obtain the desired integral matrices U, V,W .
Conversely, suppose Y has a UVW -certificate. Since U⊤U ⪰ 0 for every U and V ⪰ 0 (as a

property of diagonally dominant matrices), we obtain that U⊤U + V ⪰ 0, which implies that
Y = 1

kW
⊤(U⊤U + V )W ⪰ 0. □

The presence of a UVW -certificate allows us to easily and reliably verify the positive semidef-
initeness of a given matrix by performing only elementary arithmetic operations involving whole
numbers.

Next, recall that ei denotes the i-th unit vector. Similarly, we let fi := e0 − ei (we will be
using this notation exclusively when working in the space of cone(P ) for a set P ⊆ [0, 1]n, so it
will always be clear what the 0-th coordinate is). Given a graph G with n vertices, we define an
LS+ certificate package to be

• A matrix Y ∈ Z(n+1)×(n+1) where
– Y = Y ⊤ and Y e0 = diag(Y );
– Y ei, Y fi ∈ cone(FRAC(G)) for every i ∈ [n].

• A UVW -certificate for Y .

Notice that the presence of an LS+ certificate package asserts that Y e0 ∈ cone(LS+(G)).
Also, since FRAC(G) is a rational polytope, the conditions Y ei, Y fi ∈ cone(FRAC(G)) can be
verified using elementary arithmetic operations on whole numbers. LS+ certificate packages are
useful for helping establish that a given graph has LS+-rank at least 2.
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Proposition 17. Let G be a graph. Then r+(G) ≥ 2 if and only if there exist a valid in-
equality a⊤x ≤ β for STAB(G) and an LS+ certificate package (Y,U, V,W ) for G such that(
−β, a⊤

)
Y e0 > 0.

Proof. Suppose r+(G) ≥ 2. Then, there exists x̄ ∈ LS+(G) \ STAB(G) and a facet a⊤x ≤ β
of STAB(G) such that a⊤x̄ > β. Then, by the definition of LS+ and the density of rationals,

there exists a positive semidefinite matrix Ỹ with rational entries satisfying the second and third
conditions for an LS+ certificate package and such that

(
−β, a⊤

)
Ỹ e0 > 0. By a suitable positive

integer scaling of Ỹ , we arrive at a positive semidefinite integral matrix Y satisfying all conditions
for the existence of a LS+ certificate package (Y,U, V,W ) for G such that

(
−β, a⊤

)
Y e0 > 0 (the

existence of (U, V,W ) satisfying the last condition of the LS+ certificate package follows from
Lemma 16).

Now, suppose there exist a valid inequality a⊤x ≤ β for STAB(G) and an LS+ certificate
package (Y,U, V,W ) for G such that

(
−β, a⊤

)
Y e0 > 0. Then, by the definition of LS+ cer-

tificate package, Y e0 ∈ cone(LS+(G)). By assumption, Y e0 violates a valid inequality for
cone(STAB(G)). Therefore, cone(STAB(G)) ⊂ cone(LS+(G)) which implies r+(G) ≥ 2.

□

As our first example, consider the graph G6,1 in Figure 6.

1

2 3 4

5

6

7

Figure 6. G6,1, a 7-vertex graph with LS+-rank 2

Then we have the following:

Proposition 18. The graph G6,1 from Figure 6 has LS+-rank 2.

Proof. For convenience, let G := G6,1 throughout this proof. First, observe that |V (G)| = 7,
and so r+(G) ≤ 2. Next, consider the matrices

Y :=



76 25 40 40 40 20 20 20
25 25 0 0 0 10 10 10
40 0 40 30 30 0 10 10
40 0 30 40 30 10 0 10
40 0 30 30 40 10 10 0
20 10 0 10 10 20 0 0
20 10 10 0 10 0 20 0
20 10 10 10 0 0 0 20


, U :=



0 0 0 0 0 0 0
−1 12 −4 −4 14 −12 −12
0 0 −18 18 0 −11 11
10 16 18 18 −40 −21 −21
0 0 31 −31 0 −50 50
37 74 −38 −38 −29 31 31
139 29 88 88 90 33 33


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V :=



185 −17 30 30 17 −16 −16
−17 183 20 20 8 −11 −11
30 20 227 37 34 −44 12
30 20 37 227 34 12 −44
17 8 34 34 303 17 17
−16 −11 −44 12 17 264 −14
−16 −11 12 −44 17 −14 264


, W :=



5 0 0 0 0 0 0 10
0 5 0 0 0 0 0 −4
0 0 5 0 0 0 0 −3
0 0 0 5 0 0 0 −3
0 0 0 0 5 0 0 −3
0 0 0 0 0 5 0 −5
0 0 0 0 0 0 5 −5


.

Then one can check that 6900Y = W⊤(U⊤U + V )W , and the matrices indeed satisfy all condi-
tions for an LS+ certificate package. Thus, we obtain that

x̄ :=
1

76
(25, 40, 40, 40, 20, 20, 20)⊤ ∈ LS+(G).

On the other hand, x̄ violates the inequality (2, 1, 1, 1, 1, 1, 1)⊤x ≤ 3, which is valid for STAB(G).
Thus, we conclude that r+(G) = 2. □

The LS+ certificate package described in the proof of Proposition 18, as well as other numerical
data in support of the results in this manuscript, are made publicly available at [AT25a].

Notably, G6,1 contains a claw (i.e., a stable set S of size 3 with a vertex that is adjacent to
all 3 vertices in S). In fact, using the characterization of claw-free graphs with LS+-rank at
least 2 due to Bianchi et al. [BENW23, Corollary 32], it follows that if |V (H)| = 7, r+(H) = 2
and that H does not contain G1,1 or G1,2 as an induced subgraph, then H must contain a claw.
Thus, Proposition 18 shows that such an example indeed exists. The graph G6,1 was also studied
in [LT03], and Proposition 18 proves that the subdivision-of-a-star operation mentioned therein
can increase the LS+-rank of a graph.

Also, with Proposition 18, we can prove a slight generalization of Theorem 5(i).

Proposition 19. Let n ≥ 4, and let G be obtained from Kn by a proper stretching of a vertex.
Then r+(G) = 2.

Proof. Suppose G is obtained from Kn by a proper k-stretching of v ∈ V (Kn) for some integer
k ≥ 2. If |Ai| ≥ 2 for at least one i ∈ [k], then G must contain G1,1 or G1,2 as an induced
subgraph. Otherwise, |Ai| = 1 for all i ∈ [k], which implies that k ≥ 3 (since n ≥ 4). In this
case, G must contains the graph G6,1 as an induced subgraph. In either case, we have that
r+(G) ≥ 2.

Also, notice that G − v0 must be a perfect graph, and thus r+(G − v0) ≤ 1, showing that
r+(G) ≤ 2. □

Next, given a graph G, an integer ℓ ≥ 1 and a non-negative and non-zero vector a ∈ RV (G),
define

γℓ(G, a) :=
max

{
a⊤x : x ∈ LSℓ+(G)

}
max {a⊤x : x ∈ STAB(G)}

.

In other words, γℓ(G, a) is the integrality ratio of LSℓ+(G) in the direction of the vector a. By

imposing that a ≥ 0 and a ̸= 0, we ensure that max
{
a⊤x : x ∈ STAB(G)

}
> 0, and so γℓ(G, a)

is well-defined.
It is apparent that if γℓ(G, a) > 1 for some integer ℓ and vector a, then r+(G) > ℓ. Throughout

this paper, we will establish LS+-rank lower bounds of a graph using one of the following two
approaches:

• Provide an analytical proof for this rank lower bound (e.g., using results stated earlier
in this section);
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• Present a point x̄ ̸∈ STAB(G) with a LSℓ−1
+ certificate package showing that x̄ ∈

LSℓ−1
+ (G).

In both cases, we will write r+(G) ≥ ℓ. Likewise, we write r+(G) ≤ ℓ if there is an analytical
proof for this bound. On the other hand, there are situations when a self-contained argument
using the existing theoretical tools is not available. In this case, we will try to obtain a “softer”
upper bound using CVX+SeDuMi [GB14, Stu99], a MATLAB-based modelling system for con-
vex optimization. In our experience — and especially in moderate to large size problem instances
— it is not uncommon for CVX+SeDuMi to return an integrality ratio between 1 + 10−7 and
1 + 10−6 when there is an analytical proof that the true value is 1. Thus, given a graph G, we
write that r+(G) ≲ ℓ if, for every facet a⊤x ≤ β of STAB(G), either we have an analytical proof
that γℓ(G, a) = 1, or

γℓ(G, a) ≤ 1 + 10−6

according to CVX+SeDuMi. In such cases, it is conceivable that the true value of γℓ(G, a) is 1
for all facets of STAB(G), which would imply that r+(G) ≤ ℓ. Furthermore, due to Theorem 2,
γℓ(G, a) = 1 for all facets a⊤x ≤ β of STAB(G) where | supp(a)| < 3ℓ. Thus, to conclude that
r+(G) ≲ ℓ, it suffices to compute max

{
a⊤x : x ∈ LSℓ+(G)

}
with CVX+SeDuMi only for the

facets where | supp(a)| ≥ 3ℓ.
We remark that the computations for this work were mostly performed in MATLAB (R2023a)

[Inc23] on a laptop computer equipped with an Intel Core i9-11950H processor (8 cores, 2.6 GHz
clock speed) and 64 GB of RAM, running on the operating system Microsoft Windows 11
Education.

3. 3-minimal graphs

In this section, we focus on studying 3-minimal graphs (i.e., graphs G where |V (G)| = 9 and
r+(G) = 3). Again, at the time of this writing, the list of known 3-minimal graphs consists of

the 13 in K̂5,2 without a K4 as an induced subgraph (Figure 4), as well as one other graph in

K5,2 \ K̂5,2 [AT25b, Proposition 25].
Herein, we show that there are at least 49 non-isomorphic 3-minimal graphs in total, in-

cluding 18 in K5,2 \ K̂5,2, and another 18 graphs which are not in K5,2. We also present some
computational findings that could guide our search for ℓ-minimal graphs for ℓ ≥ 4.

To do so, we need to extend the notion of LS+ certificate packages to consider an analogous
framework for verifying the membership of points in LS2+(G). First, we prove a simple lemma

that helps explain one of the conditions in our LS2+ certificate packages. Given a set P ⊆ [0, 1]n,
we say that P is lower-comprehensive if, for every x ∈ P , 0 ≤ y ≤ x implies y ∈ P . Observe that
FRAC(G) is lower-comprehensive for every graph G. It also follows readily from the definition of
LS+ that if P is lower-comprehensive, then so is LS+(P ). Thus, we know that LSℓ+(G) is lower-

comprehensive for every graph G and every non-negative integer ℓ. Also, given x(1), x(2) ∈ Rn+1,
we say that x(1) dominates x(2) if

• x(1) = x(2) = 0, or
• [x(1)]0 > 0, [x(2)]0 ≥ 0, and [x(2)]0 · x(1) ≥ [x(1)]0 · x(2).

Then we have the following.

Lemma 20. Let P ⊆ [0, 1]n be a lower-comprehensive set, and let x(1), x(2) ∈ Rn+1
+ . If x(1) ∈

cone(P ) and x(1) dominates x(2), then x(2) ∈ cone(P ).

Proof. The claim obviously holds if x(1) = x(2) = 0, so we may assume that [x(1)]0 > 0, [x(2)]0 ≥
0, and [x(2)]0 · x(1) ≥ [x(1)]0 · x(2). Since x(1) ∈ cone(P ), we have [x(2)]0 · x(1) ∈ cone(P )
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(as cone(P ) is closed under non-negative scalar multiplication). Also, given that P is lower-

comprehensive, so is cone(P ), and so it follows that [x(1)]0 · x(2) ∈ cone(P ). Using again the

fact that cone(P ) is closed under non-negative scalar multiplication (and that [x(1)]0 > 0), we

conclude that x(2) ∈ cone(P ). □

Next, given a graph G with n vertices, we define an LS2+ certificate package to be as follows:

• A set of matrices M1 := {Yei , Yfi : i ∈ [n]} ⊆ Z(n+1)×(n+1) such that, for every M ∈ M1,

– M = M⊤ and Me0 = diag(M);
– Mei,Mfi ∈ cone(FRAC(G)) for every i ∈ [n].

• A matrix Y ∈ Z(n+1)×(n+1) where
– Y = Y ⊤ and Y e0 = diag(Y );
– for every i ∈ [n],

∗ Yeie0 dominates Y ei;
∗ Yfie0 dominates Y fi.

• A UVW -certificate for every M ∈ M1 and Y .

Notice the conditions on the matrices in M1 certify that Yeie0, Yfie0 ∈ cone(LS+(G)) for all
i ∈ [n]. Next, using Lemma 20, the domination conditions assure that, for every i ∈ [n],

Yeie0 ∈ cone(LS+(G)) ⇒ Y ei ∈ cone(LS+(G)),

Yfie0 ∈ cone(LS+(G)) ⇒ Y fi ∈ cone(LS+(G)).

Thus, together with other conditions on Y , we obtain that Y e0 ∈ cone(LS2+(G)). Generally, a

LS2+ certificate package for a vector in Rn consists of 4(1+2n) matrices (the certificate matrices
M1 ∪ {Y }, plus a UVW -certificate of each of these matrices). Due to the above arguments and
following a similar proof to that of Proposition 17, we have the following fact.

Proposition 21. Let G be a graph. Then r+(G) ≥ 3 if and only if there exist a valid inequality
a⊤x ≤ β for STAB(G) and an LS2+ certificate package (Y,M1, and UVW -certificates) for G

such that
(
−β, a⊤

)
Y e0 > 0.

We next show that there are at least 49 non-isomorphic 3-minimal graphs. First, Figure 7
gives eight of these graphs. Notice that every graph has the property that deg(8) = 2, and the
vertices {1, 2, 3, 4, 5, 6} induce either G1,1 or G1,2.

Proposition 22. Each of the eight graphs in Figure 7 is 3-minimal.

Proof. First, for i ∈ {1, 2, 3}, ē⊤x ≤ 3 is valid for STAB(G7,i), and for each of these graphs
we provide an LS2+ certificate package [AT25a] for a point that violates this inequality, thus by
Proposition 21, r+(G7,i) ≥ 3.

Similarly, for i ∈ {4, 5, 6, 7, 8}, (1, 1, 1, 1, 1, 1, 1, 1, 2)⊤x ≤ 3 is valid for STAB(G7,i), and we
also provide LS2+ certificates packages for points violating this inequality.

Since |V (G)| = 9 readily implies r+(G) ≤ 3 (by Theorem 2), we obtain that r+(G) = 3 in all
eight cases. □

Next, it follows from Lemma 15 that if the inequality a⊤x ≤ β has LS+-rank 3 for STAB(G)
and is also valid for STAB(H) where H is an edge subgraph of G, then r+(H) ≥ 3. Thus, we
obtain that many edge subgraphs ofG7,1, . . . , G7,8 are also 3-minimal. After removing isomorphic
graphs, this results in a list of 49 3-minimal graphs, which we list in Figure 8. (Note that, to
reduce cluttering and with every vertex having a single-digit vertex label, we use ij to denote
the edge {i, j}.)

In particular, this proves the following.
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Figure 7. Eight edge-maximal 3-minimal graphs

Theorem 23. There are at least 49 non-isomorphic 3-minimal graphs.

We remark that the 49 graphs described in Figure 8 contain (up to isomorphism) every
previously known 3-minimal graphs described in [EMN06, AT24b, AT25b]. Thus, for some of
these graphs, we now have multiple independent proofs of them being 3-minimal.

Next, let us relate Theorem 23 to the existing findings about 3-minimal graphs. First, notice
that G7,1, G7,2, G7,3 and their edge subgraphs described in Figure 8 all belong to K5,2. 13

of these graphs further belong to K̂5,2 and are exactly those shown in Figure 4. Our list also

contains 18 3-minimal graphs which belong to K5,2 \ K̂5,2.
On the other hand, G7,4, . . . , G7,8, as well as their edge subgraphs described in Figure 8, do

not belong to K5,2. (One way to see this is that every graph Kn,d has at least d vertices of degree
2.) Thus, these graphs provide the first known instances of ℓ-minimal graphs which cannot be
obtained by stretching the vertices of a clique. Also, with 19 edges, G7,4 and G7,5 are the densest
known 3-minimal graphs yet. The sparsest possible 3-minimal graphs contain 14 edges [AT24a,

Proposition 28], which is attained by several graphs in K̂5,2.
Now recall Theorem 4, which assures that every ℓ-minimal graph can be obtained from an

(ℓ− 1)-minimal graph by applying the following two graph operations:

• 1-Join: Adding a new vertex and joining it to some (or all) vertices of the existing graph;
• 2-stretch: Applying a proper 2-stretching operation to one of the existing vertices of the
graph.

Applying this observation iteratively, we obtain the following:

Corollary 24. Let G be an ℓ-minimal graph for some positive integer ℓ. Then, there exists
graphs G1, . . . , Gℓ and H1, . . . ,Hℓ−1 such that

• G1 = K3 and Gℓ = G;
• for every i ∈ [ℓ − 1], Hi can be obtained from Gi by adding a new vertex and joining it
to some (or all) vertices of Gi;
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G7,1 G7,1 − {37} G7,1 − {47} G7,1 − {67} G7,1 − {37, 47} G7,1 − {37, 67} G7,1 − {39, 47}

G7,1 − {47, 49} G7,1 − {47, 69} G7,1 − {37, 47, 69} G7,1 − {39, 47, 69} G7,2 G7,3 G7,3 − {24}

G7,3 − {26} G7,3 − {37} G7,3 − {39} G7,3 − {49} G7,3 − {69} G7,3 − {24, 39} G7,3 − {24, 49}

G7,3 − {24, 69} G7,3 − {26, 39} G7,3 − {26, 49} G7,3 − {37, 49} G7,3 − {39, 49} G7,3 − {24, 37, 49} G7,3 − {24, 39, 49}

G7,3 − {24, 39, 69} G7,3 − {26, 37, 49} G7,3 − {26, 39, 49} G7,4 G7,4 − {26} G7,4 − {37} G7,4 − {26, 37}

G7,5 G7,6 G7,6 − {26} G7,7 G7,7 − {24} G7,7 − {26} G7,7 − {47}

G7,7 − {24, 47} G7,8 G7,8 − {26} G7,8 − {37} G7,8 − {67} G7,8 − {26, 37} G7,8 − {37, 67}

Figure 8. 49 non-isomorphic 3-minimal graphs

• for every i ∈ {2, . . . , ℓ}, Gi can be obtained from Hi−1 by a proper 2-stretching of a
vertex.

In other words, we see that every ℓ-minimal graph can be constructed by starting with K3 (the
unique 1-minimal graph), and then applying 1-join and 2-stretch operations alternatively. For
some ℓ-minimal graphs, there is some flexibility in the sequencing of these 1-join and 2-stretch
operations — for example, an ℓ-minimal graph in K̂ℓ+2,ℓ−1 can be constructed by applying ℓ− 1
1-join operations in a row to K3 to obtain Kℓ+2, and then applying ℓ− 1 2-stretch operations.
However, the discovery of the 3-minimal graphs outside of K5,2 shows that, for some ℓ-minimal
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graphs, there is no flexibility in the order of these operations. For instance, Figure 9 shows the
unique sequence of 1-join and 2-stretch operations with which we can construct G7,4 from K3.

Figure 9. Obtaining G7,4 from K3 via 1-join and 2-stretch operations

Also, observe that a common feature of all 3-minimal graphs shown in Figure 8 is that they
all contain K5 as a graph minor. In particular, for each graph, contracting the edges {4, 5},
{5, 6}, {7, 8}, and {8, 9} (and then removing parallel edges) would result in K5. This further
shows that each of the 49 graphs shown in Figure 8 contains a stretched clique in K5,2 as an
edge subgraph. As we shall see in the next section, this pattern no longer holds for 4-minimal
graphs.

Next, we turn our attention to the clique number of a graph, which has been shown in [AT25b]
to be relevant in determining whether a graph is ℓ-minimal under some circumstances. First, we
see that among the 49 3-minimal graphs shown in Figure 8, 48 of them have ω(G) = 3, and one
has ω(G) = 4 (G7,8, with the vertices {2, 3, 6, 7} inducing a K4). Thus, we see that ω(G) ≤ 3 is
not a necessary condition for a graph to be ℓ-minimal in general.

The situation seems to be more interesting if we restrict our discussion to stretched cliques.
Before we go further, the following lemma will be helpful.

Lemma 25. Given G ∈ Kn,d where n ≥ 3 and d ≥ 0, we have

(i) |E(G)| ≥ n(n−1)
2 + 2d.

(ii) If ω(G) ≥ 3, then G contains an edge subgraph H ∈ Kn,d where |E(H)| = n(n−1)
2 + 2d

and ω(H) = ω(G).

Proof. We first prove (i). Given distinct i.j ∈ [n], it follows from the definition of the vertex-
stretching operation that there exists at least one edge in G which joins a vertex associated

with i and a vertex associated with j, giving a total of at least n(n−1)
2 distinct edges. Also,

for every i ∈ D(G), we have the edges {i0, i1} and {i0, i2}, which yields an additional total of

2|D(G)| = 2d edges. Thus, |E(G)| ≥ n(n−1)
2 + 2d.

For (ii), suppose K ⊆ V (G) induces a clique of size at least three in G. Then observe that no
two vertices in K can be associated with the same index in [n]. Thus, if there are multiple edges
joining vertices associated with distinct i, j ∈ [n], we can remove all but one of them without
deleting edges that join vertices in K. Doing this for all distinct i, j ∈ [n] would yield the desired

graph H, which is an edge subgraph of G with |E(H)| = n(n−1)
2 + 2d and ω(H) = ω(G) (since

K still induces a clique in H). □

Therefore, given integers n, d where n ≥ 3 and d ≥ 0, we say that G ∈ Kn,d is a sparse

stretched clique if |E(G)| = n(n−1)
2 + 2d. Observe that a sparse stretched clique necessarily

belongs to K̂n,d.

Next, recall Theorem 7, which states that given G ∈ K̂5,2, ω(G) ≤ 3 is sufficient for G to be
3-minimal. On the other hand, numerical evidence suggests that ω(G) ≤ 3 is not sufficient for
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G ∈ K5,2 to be 3-minimal. In Figure 10, we list the seven graphs for which ē⊤x ≤ 3 is the lone
facet with full support, but computations from CVX+SeDuMi show that r+(G) ≲ 2 in all seven
cases.

Figure 10. The seven graphs G ∈ K5,2 with ω(G) ≤ 3 and r+(G) ≲ 2

Thus, given G ∈ K5,2, the inequality ē⊤x ≤ 3 may seem to have LS+-rank two or three when
ω(G) = 3. On the other hand, we show that this inequality cannot have LS+-rank 3 if ω(G) ≥ 4.

Proposition 26. Let G ∈ K5,2. If ω(G) ≥ 4, then the inequality ē⊤x ≤ 3 has LS+-rank at most
2.

Proof. Given G ∈ K5,2 with ω(G) ≥ 4, we know from Lemma 25 that G has an edge subgraph

H ∈ K5,2 where |E(H)| = 14 and ω(H) = ω(G). By Lemma 15, it suffices to show that ē⊤x ≤ 3
has LS+-rank at most 2 for STAB(H).

Next, let us focus on the graph H. If ē⊤x ≤ 3 is not a facet of STAB(H), then it follows from
the proof of [AT25b, Lemma 7] that ē⊤x ≤ 3 can be expressed as the sum of facets of STAB(H)
that do not have full support, in which case Lemma 12 implies that r+(H) ≤ 2. Thus, we may
assume that ē⊤x ≤ 3 is indeed a facet of STAB(H). (For a complete characterization of when
ē⊤x ≤ d+ 1 is a facet of the stable set polytope of a graph in Kn,d, see [AT25b, Lemma 6].)

Now, an exhaustive search shows that there are exactly three non-isomorphic graphs H ∈ K5,2

where |E(H)| = 14, ω(H) ≥ 4, and ē⊤x ≤ 3 is a facet of STAB(H), which are shown in Figure 11.
We show that these three graphs all have LS+-rank at most two. First, notice that G1 − 4 is
a perfect graph. Thus, r+(G1 − 4) ≤ 1, which implies that r+(G1) ≤ 2. Likewise, G2 − 3 and
G3 − 4 are also perfect. Therefore, G1, G2, and G3 (and thus, in particular, the inequality
ē⊤x ≤ 3 of their stable set polytopes) all have LS+-rank at most 2. This proves our claim. □
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Figure 11. The three non-isomorphic graphs H ∈ K5,2 where |E(H)| = 14,

ω(H) ≥ 4, and ē⊤x ≤ 3 is a facet of STAB(H)

Next, we provide some details about our computational search that turned up the 49 3-
minimal graphs we listed in Figure 8. First, given a 3-minimal graph G, we may assume (due to
Theorem 4) that G can be obtained from a proper 2-stretching of i ∈ V (H) for some 7-vertex
graph H where H−i is isomorphic to G1,1 or G1,2 (which, again, are the only 2-minimal graphs).
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An exhaustive search found 1115 non-isomorphic graphs which satisfy these conditions. Among
them, there are 540 instances of (G, a) where a ∈ R9 defines a full-support facet for STAB(G).
For convenience, let X3 denote the set consisting of these 540 ordered pairs (G, a). Note that
there are 9 graphs which appear in two elements in X3 for having two distinct full-support facets,
and none of them belong to K5,2. If it is indeed true that no graph in K5,2 has a full-support

facet that is different from ē⊤x ≤ 3, then it would follow from Proposition 26 that r+(G) ≤ 2
for every G ∈ K5,2 where ω(G) ≥ 4.

Figure 12. Plotting γ2(G, a) for all (G, a) ∈ X3

Using CVX+SeDuMi, we computed the values of γ2(G, a) for all 540 (G, a) ∈ X3, and plotted
them on the number line as shown in Figure 12. The 540 data points can be categorized into
the following three groups:

• 31 elements with γ2(G, a) > 1.0016. They correspond exactly to G7,1, G7,2, G7,3, and
their edge subgraphs listed in Figure 8. These 31 graphs share the common property
that they are all in K5,2 and have ē⊤x ≤ 3 as the facet with LS+-rank three.

• 18 elements with 1.00019 < γ2(G, a) < 1.00062. These correspond to G7,4, . . . , G7,8 and
their edge subgraphs listed in Figure 8. These 18 graphs do not belong to K5,2, and their

facet with LS+-rank three is (1, 1, 1, 1, 1, 1, 1, 1, 2)⊤x ≤ 3.
• 491 elements with γ2(G, a) ≤ 1 + 4 · 10−7. They all visually correspond to the dot at 1
in Figure 12.

Thus, we see that aside from the 49 3-minimal graphs we previously described, every graph
in our search satisfies r+(G) ≲ 2. This gives us a level of confidence that we have in fact found
every 3-minimal graph, and that the list in Figure 8 is complete.

Conjecture 27. There are exactly 49 non-isomorphic 3-minimal graphs.

We conclude this section by presenting more computational findings for the graphs and facets
in X3. Recall that we generated the collection X3 by exhaustively checking among a pool of
candidate graphs for full-support facets. However, the approach of casting a wide net and
searching exhaustively within may not be viable for 4-minimal graphs and beyond when both
the number of candidate graphs and the time demand for each optimization problem increase
substantially. Therefore, it is worthwhile to take a closer look at the numerical data in our search
for 3-minimal graphs for possible insights that could guide our search for ℓ-minimal graphs for
ℓ ≥ 4.

Thus, in addition to γ2(G, a), we also computed γ1(G, a) for every (G, a) ∈ X3, as we are
interested to see if γ1(G, a) has some predictive value for γp(G, a) for p ≥ 2. If so, then γ1(G, a)
(which is much less computationally costly to obtain) could serve as a valuable heuristic for
identifying ℓ-minimal graphs.

Figure 13 (left) gives the scatterplot of γ1(G, a) (x-axis) versus γ2(G, a) (y-axis) for each of
the 540 elements in X3. All (G, a) ∈ X3 satisfy 1.0036 ≤ γ1(G, a) ≤ 1.0608. It is not surprising
that these integrality ratios are all comfortably above 1 since every graph analyzed here contains
either G1,1 or G1,2 as an induced graph, and thus must have LS+-rank at least 2. A simple linear
regression shows a very weak (r ≈ 0.0947) positive correlation between γ1(G, a) and γ2(G, a).
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Figure 13. Relating γ1(G, a) and γ2(G, a) for elements in X3

Next, we analyze the relation between γ1(G, a) and γ2(G, a) from a different perspective. For
every n where 0 ≤ n ≤ 540, we define g(n) to be the number of the 49 3-minimal graphs listed
in Figure 8 we would find among the n facets with the lowest γ1(G, a). Obviously, g(0) = 0
and g(540) = 49, and Figure 13 (right) gives the plot of g(n) for 0 ≤ n ≤ 540. Observe that
the points (n, g(n)) all stay below the line y = 49

540x, which indicates that the facets with higher
γ1(G, a) indeed contain a higher concentration of facets with LS+-rank 3. In particular, notice
that g(n) = 0 for all n ≤ 127, which means that the 127 facets with the lowest values of γ1(G, a)
all basically have γ2(G, a) = 1.

4. 4-minimal graphs

We now turn our attention to 4-minimal graphs. As with LS+ and LS2+ certificate packages,

here is an analogous framework for verifying the membership of points in LS3+(G). Given a

graph G with n vertices, we define an LS3+ certificate package to be

• A set of matrices M2 :=
{
Yeiej , Yeifj , Yfiej , Yfifj : i, j ∈ [n]

}
⊆ Z(n+1)×(n+1) such that,

for every M ∈ M2,
– M = M⊤ and Me0 = diag(M);
– Mei,Mfi ∈ cone(FRAC(G)) for every i ∈ [n].

• A set of matrices M1 := {Yei , Yfi : i ∈ [n]} ⊆ Z(n+1)×(n+1) such that, for every M ∈ M1,

– M = M⊤ and Me0 = diag(M);
– for every i, j ∈ [n],

∗ Yeieje0 dominates Yeiej ;
∗ Yeifje0 dominates Yeifj ;
∗ Yfieje0 dominates Yfiej ;
∗ Yfifje0 dominates Yfifj .

• A matrix Y ∈ Z(n+1)×(n+1) where
– Y = Y ⊤ and Y e0 = diag(Y );
– for every i ∈ [n],

∗ Yeie0 dominates Y ei;
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∗ Yfie0 dominates Y fi.
• A UVW -certificate for every non-zero matrix in M2,M1, and Y .

The conditions on M2 establish that Me0 ∈ cone(LS+(G)) for every M ∈ M2. Then the
conditions imposed on M1 assure that Me0 ∈ cone(LS2+(G)) for every M ∈ M1. Finally, the

additional constraints on Y ensure that Y e0 ∈ cone(LS3+(G)). Now observe that M2 inherently
contains many matrices of all zeros — for instance, for every edge {i, j} ∈ E(G), LS+ imposes
the constraint [Y ei]j = 0. Hence, Yeiej is the zero vector, and consequently Yeiej must be a
matrix of all zeros. Matrices of all zeros are trivially PSD, and not including UVW -certificates
for them helps somewhat reduce the size of these certificate packages. Thus, a LS3+ certificate
package for a vector in Rn consists of up to 4(1 + 2n + 4n2) matrices (the certificate matrices
M2,M1, and Y , as well as a UVW -certificate for each of these matrices which are non-zero).
While verifying the validity of an LS3+ certificate package generally requires checking a much

greater number of matrices and conditions compared to LS+ and LS2+ certificate packages, each
condition can still be checked reliably as, again, they only depend on elementary arithmetic
operations on integers. Using these ideas and following a similar proof to that of Proposition 17,
we have the following fact.

Proposition 28. Let G be a graph. Then r+(G) ≥ 4 if and only if there exist a valid inequality
a⊤x ≤ β for STAB(G) and an LS3+ certificate package (Y,M1,M2, and UVW -certificates) for

G such that
(
−β, a⊤

)
Y e0 > 0.

For this work, we performed a computational search for 4-minimal graphs, and found the
following.

Theorem 29. There are at least 4107 non-isomorphic 4-minimal graphs.

Proof. First, we are able to generate LS3+ certificate packages for 570 graphs G, showing that

there exists x̄ ∈ LS3+(G) \ STAB(G) for these graphs. Next, Lemma 15 implies that many edge
subgraphs of these 570 graphs are also 4-minimal. Collecting these edge subgraphs and checking
for isomorphisms among them resulted in a total of 4107 distinct 4-minimal graphs. □

The LS3+ certificate packages, as well as a full list of 4-minimal graphs we found, are available

at [AT25a]. Our dataset also includes MATLAB code which can be used to verify all LS+, LS
2
+,

and LS3+ certificate packages mentioned in this manuscript. Furthermore, all matrices in our
data are stored as widely-supported CSV (comma-separated values) files, so one can also verify
and analyze these certificate packages in other programming languages, such as Python and R.

Next, we highlight a few of the 4-minimal graphs we found with notable features in Figure 14.
For each graph we provide its encoding in graph6 format, the facet of its stable set polytope
with LS+-rank four, and the integrality ratio of this inequality according to CVX+SeDuMi.
(The reader may refer to [McK] for a detailed description of graph6, an encoding of undirected
graphs as strings of printable ASCII characters.)

Among the 4107 4-minimal graphs we found, 2318 belong to K6,3, including the aforemen-

tioned 588 graphs in K̂6,3 with clique number at most three. Thus, in addition to the analytical

proof from [AT25b], we now have an independent numerical proof that every graph G ∈ K̂6,3

with ω(G) ≤ 3 is indeed 4-minimal. The densest 4-minimal stretched clique we found have 28
edges — G14,1 and G14,2 are two such examples.

The densest 4-minimal graphs we discovered overall have 29 edges — G14,4 and G14,5 give
two such instances. On the other hand, the sparsest 4-minimal graphs we found have 21 edges
— there are 40 of them, all of which are sparse stretched cliques in K̂6,3. One of these graphs
is G14,3, which has the notable feature that its facet of LS+-rank four has the largest value of
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Figure 14. A sample of twelve 4-minimal graphs with notable features
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γ3(G, a) among all 12-vertex graphs we tested. The patterns we have seen from 3- and 4-minimal
stretched cliques suggest the following.

Conjecture 30. For every positive integer ℓ, a sparsest ℓ-minimal graph is a sparse stretched
clique in K̂ℓ+2,ℓ−1.

Conjecture 31. For every positive integer ℓ, the maximum value of γℓ−1(G, a) among ℓ-minimal

graphs is attained by a sparse stretched clique G ∈ K̂ℓ+2,ℓ−1 and a := ē.

Next, G14,7, G14,8, and G14,9 give examples of 4-minimal graphs which contain K4 as an
induced subgraph. In particular, both {1, 2, 3, 10} and {2, 3, 9, 10} induce a K4 in G14,7, which
is the only 4-minimal graph we found with multiple K4’s induced as subgraphs. Also, notice
that these graphs do not belong to K6,3.

In other words, as with 3-minimal graphs, we did not find any 4-minimal graphs in K6,3

where ω(G) ≥ 4. In fact, one can exhaustively search and find that there are exactly 121

non-isomorphic sparse stretched cliques G ∈ K̂6,3 where ēTx ≤ 4 is a facet of STAB(G). 40 of
them have ω(G) = 3, all of which are among graphs which have been shown to be 4-minimal
in Theorem 29. The remaining 81 all have ω(G) ≥ 4, and one can use similar ideas as in the
proof of Proposition 26 to show that all 81 graphs have LS+-rank at most 3. Thus, we can use
the same argument for Proposition 26 to show that ēTx ≤ 4 has LS+-rank at most 3 for every
graph G ∈ K6,3 with ω(G) ≥ 4. This leads us to believe the following.

Conjecture 32. For every positive integer ℓ, if G ∈ Kℓ+2,ℓ−1 and ω(G) ≥ 4, then r+(G) ≤ ℓ−1.

If Conjecture 32 holds, then combining it with Theorem 7 gives that a graph G ∈ K̂ℓ+2,ℓ−1,
G is ℓ-minimal if and only if ω(G) ≤ 3.

Next, recall our discussion around Corollary 24 about 3-minimal graphs where the only way
to obtain these graphs from K3 using 1-join and 2-stretch operations is to alternate between
these two operations. We found that there are also many such examples for 4-minimal graphs
— G14,6 and G14,9 are two such instances.

Finally, recall that we mentioned earlier that every one of 49 3-minimal graphs in Figure 8
contains a stretched clique in K5,2 as an edge subgraph. This is no longer true for 4-minimal
graphs, as G14,10, G14,11, and G14,12 provide instances which do not contain a stretched clique
in K6,3 as an edge subgraph. In particular, G14,12 does not even contain K6 as a graph minor,
giving the first example of an ℓ-minimal graph which does not contain Kℓ+2 as a graph minor.

Next, we go into more detail about our approach for searching for 4-minimal graphs. First,
we used the criteria described in Theorem 4 to construct a pool of viable candidates for being
4-minimal graphs. Let X4 denote the set of ordered pairs (G, a) with the following properties:

• V (G) = [12], and the vertices in [9] ⊂ V (G) induce one of the 49 3-minimal graphs listed
in Figure 8.

• deg(11) = 2, with ΓG(11) = {10, 12}. Also, ΓG(10) and ΓG(12) are not subsets of each
other. (This is to ensure that G can be obtained from a proper 2-stretching of another
graph.)

• a is the direction of a full-support facet of G using the criterion described in [AT24a,
Corollary 15].

An exhaustive search found that |X4| = 2038174 after eliminating redundant isomorphic
graphs. A straightforward approach would then be to compute γ3(G, a) for each of these ele-
ments, and then proceed to generate LS3+ certificate packages for graphs with integrality ratios

comfortably above 1. However, optimizing over (a straightforward formulation of) LS3+(G) with
CVX+SeDuMi for a 12-vertex graph G takes 8-10 minutes per instance on our machine, which
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means that computing γ3(G, a) for all elements in X4 this way would take more than 30 years.
Thus, we need additional insights to narrow down our search.

Therefore, let us focus on a particular subset of X4 by imposing the edge subgraph partial
order on this set: Given (G, a), (G′, a′) ∈ X4, we define (G, a) ≤ (G′, a′) if a = a′ and G is an
edge subgraph of G′. In this case, it follows from Lemma 15 that r+(G

′) = 4 implies r+(G) = 4.
Thus, let X̄4 to be the set of elements (G, a) ∈ X4 which are minimal with respect to this partial
order. Then we know that every 4-minimal graph contains at least one graph in X̄4 as an edge
subgraph. Also, we have |X̄4| = 6822, which is a much more manageable set to work with.
Figure 15 shows the plot of the values of γ3(G, a) on the real number line for all (G, a) ∈ X̄4.

Figure 15. Plotting γ3(G, a) for all (G, a) ∈ X̄4

Next, observe that for every (G, a) ∈ X4,

(1) γ3(G, a) ≤ max
(G′,a)∈X̄4

{
γ3(G

′, a) : (G′, a) ≤ (G, a)
}
.

Using (1), we obtain an upper bound on γ3(G, a) for every (G, a) ∈ X4. Then we selectively
computed the actual value of γ3(G, a) for elements which are promising, resulting in the collection
of 4-minimal graphs described in Theorem 29. With this reduction, we ended up computing
γ3(G, a) for around 16000 graphs in X4. At 8-10 minutes per graph, solving these 16000 SDPs
alone took CVX+SeDuMi more than 2000 hours of computation time.

Next, let us take a closer look at Figure 15. First, notice that there is a cluster of values
above 1.001 — they consist of 40 elements in X̄4, which are exactly the aforementioned 40
sparse stretched cliques in K6,3 with clique number at most 3. In particular, the rightmost dot
in Figure 15 represents the integrality ratio of G14,3.

In addition to these 40 sparse stretched cliques, there are another 134 graphs in X̄4 which are
certified to be 4-minimal in Theorem 29, with integrality ratios between 1.00004 and 1.0005.
Unlike the case in Figure 12, there is not a clean visual break indicating which graphs “appar-
ently” have integrality ratios above 1, and so we suspect that there could be more than 174
4-minimal graphs among elements of X̄4.

Recall that in our analysis on X3, we looked into the possible predictive value of γ1(G, a)
(computationally easier to obtain) for γ2(G, a) (actual indicator of whether a graph has LS+-
rank 3). Likewise, it is natural to wonder if γ1(G, a) and/or γ2(G, a) can serve as a heuristic in
our search for 4-minimal graphs. In particular, between γ1(G, a) and γ2(G, a), which has better
predictive value for γ3(G, a)? To that end, we plotted γ1(G, a) against γ3(G, a) (Figure 16,
left), as well as γ2(G, a) against γ3(G, a) (Figure 16, right). A simple linear regression shows
that γ2(G, a) (r ≈ 0.3158) indeed has a stronger correlation with γ3(G, a) compared to γ1(G, a)
(r ≈ 0.03976) for this particular set of graphs and facets. This is not surprising, as γ2(G, a)
(3-4 seconds per instance) is more computationally costly to obtain than γ1(G, a) (roughly
0.25 seconds per instance) and should reveal more information about the underlying graph. In
particular, as the clusters of points on the lower-left corner of both scatterplot suggest, graphs
with the lowest γ1(G, a) and γ2(G, a) values all seem to have γ3(G, a) very close to 1.
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Figure 16. Scatterplots of γ1(G, a) versus γ3(G, a) (left) and γ2(G, a) versus
γ3(G, a) (right) for all (G, a) ∈ X̄4

5. Vertex-transitive graphs

In this section, we look into the smallest vertex-transitive graphs with a given LS+-rank.
As we saw, ℓ-minimal graphs must contain some (but not all) vertices with degree 2, making
them necessarily irregular. Could restricting ourselves to highly-symmetric graphs expose new
structures that make instances of the stable set problem challenging for LS+?

Given ℓ ∈ N, let n+(ℓ) denote the minimum number of vertices among vertex-transitive
graphs with LS+-rank exactly ℓ. Theorem 2 implies that n+(ℓ) ≥ 3ℓ for every ℓ ∈ N, and
the aforementioned result by Stephen and the second author [ST99] on the line graphs of odd

cliques show that n+(ℓ) ≤
(
2ℓ+1
2

)
= 2ℓ2 + ℓ for every ℓ ∈ N. Both bounds are tight for ℓ = 1, as

n+(1) = 3 is attained by K3.
Also, recall the graphs Bk defined in Section 1. Then Theorem 9 implies that

min {n+(k) : k ≥ ℓ} ≤ 4ℓ+ 8

for every odd ℓ ∈ N. Note that since we do not know the exact rank of Bk in general, Theorem 9
alone does not provide a bound for n+(ℓ) for a specific ℓ.

Next, given a graph G and ℓ ∈ N, define

αLSℓ+
(G) := max

{
ē⊤x : x ∈ LSℓ+(G)

}
.

To show that r+(G) > ℓ, it is sufficient to show that αLSℓ+
(G) > α(G). The following result will

also be helpful.

Lemma 33. Suppose G is a k-regular vertex-transitive graph with n vertices and r+(G) = ℓ ≥ 2.
Then 3 ≤ k ≤ n+ 2− 3ℓ.

Proof. If k ≤ 2, then each component in G is either a single vertex (k = 0), an edge (k = 1), or
a cycle (k = 2), and r+(G) ≤ 1 in all of these cases. Thus, it follows that k ≥ 3. Next, since
G is vertex-transitive, G ⊖ i is isomorphic for all i ∈ V (G), and so r+(G ⊖ i) ≥ ℓ − 1 (due to
Theorem 14), and thus |V (G ⊖ i)| ≥ 3ℓ − 3. Since the destruction of i removes k + 1 vertices
from G, this shows that n ≥ 3ℓ+ k − 2, and the claim follows. □
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A well-studied family of vertex-transitive graphs which we will frequently refer to is the
circulant graphs. Given S ⊆ [n], we define the circulant graph CS

n where V (CS
n ) := [n] and

E(CS
n ) := {{i, j} : (j − i) mod n ∈ S or (i− j) mod n ∈ S} .

Next, we will show that the graphs G17,1, G17,2, and G17,3 from Figure 17 are the smallest
vertex-transitive graphs with LS+-rank 2, 3, and 4, respectively. This shows that n+(2) = 8,

n+(3) = 13, and n+(4) = 16. Notice that G17,1 = C
{1,2}
8 and G17,2 = C

{1,5}
13 are both circulant

graphs. For G17,3, one way to make sense of the graph is to observe that it consists of a copy

of C
{1,4}
8 (induced by vertices {1, . . . , 8}) and a copy of C

{3,4}
8 (induced by vertices {9, . . . , 16})

joined together by a perfect matching.
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G17,1 G17,2 G17,3

Figure 17. The smallest vertex-transitive graphs with LS+-rank 2 (left), 3 (cen-
tre), and 4 (right)

A significant portion of our work in this section involves proving LS+-rank upper bounds
for vertex-transitive graphs up to a certain size, which is largely aided by the fact that vertex-
transitive graphs on up to 47 vertices have been exhaustively listed (see [MR90, Ski, RH20]).

We now determine n+(2).

Proposition 34. n+(2) = 8. Moreover, the only vertex-transitive graph G where |V (G)| ≤ 8

and r+(G) = 2 is G17,1 := C
{1,2}
8 (Figure 17, left).

Proof. Suppose G is a k-regular vertex-transitive graph on n vertices, and r+(G) = 2. To find
the smallest such graph, we may assume that G is connected (otherwise G contains a proper
subgraph with the same LS+-rank). From Lemma 33, we know that 3 ≤ k ≤ n − 4, and so
n ≥ 7. If n = 7, then k = 3, and no such graph exists. If n = 8, then 3 ≤ k ≤ 4. There are a
total of 5 such graphs [MR90, Ski], as listed in Figure 18.

Observe that G1 = C
{1,4}
8 , and destroying any vertex yields a bipartite graph, and so r+(G1) =

1. Next, G2 (the 3-cube) and G3 (K4,4) are both bipartite and thus have LS+-rank 0. G4 is
obtained from joining two disjoint copies of K4 with a perfect matching, and thus is a perfect
graph, which implies that r+(G4) = 1. This leaves us with G5, which is the graph G := G17,1

from Figure 17. There are several ways to show that r+(G) ≥ 2:

• An LS+ certificate package [AT25a] shows that 4
15 ē ∈ LS+(G), which implies that

αLS+(G) ≥ 32
15 > α(G) = 2. Thus, r+(G) ≥ 2.
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Figure 18. The list of connected k-regular vertex-transitive graphs on 8 vertices
with 3 ≤ k ≤ 4

• Let A(G) be the adjacency matrix of the complement graph of G, let d :=
√
2+4

8(
√
2+1)

,

and let Y :=

[
1 dē⊤

dē dI8 +
d√
2+1

A(G)

]
. Then one can check that Y ∈ L̂S+(G) (see, for

instance, [ALT22, Proposition 4] for a more detailed analysis for the LS+ certificates for
regular graphs and some vertex-transitive graphs). This shows that αLS+(G) ≥ 8d ≈
2.24 > α(G).

• Observe that G − {1, 3} is isomorphic to G1,2. Since G contains an induced subgraph
with LS+-rank 2, r+(G) ≥ 2.

Finally, since |V (G)| = 8, r+(G) ≤ 2 (by Theorem 2). It thus follows that r+(G) = 2. □

We remark that, for n = 9, there is also exactly one vertex-transitive graph with LS+-rank 2:

C
{1,2}
9 (which contains G1,1 as an induced subgraph). The other two graphs which satisfy the

criterion in Lemma 33 are C
{1,3}
9 and the Paley graph on 9 vertices, both of which would result

in a bipartite graph upon the destruction of any vertex.
Next, we remark that while αLSℓ+

(G) > α(G) implies r+(G) > ℓ, the converse is not true.

Before we describe such an example, we first prove a more general result.

Proposition 35. Suppose G is a graph with n vertices and deg(i) ≥ k for every vertex i ∈ V (G).
Then

(i)
αLS+(G) ≤ n− k.

(ii) Moreover, if max
{
ē⊤x : x ∈ FRAC(G⊖ i)

}
≤ 1

2 |V (G ⊖ i)| for every vertex i ∈ V (G),
then

αLS+(G) ≤ n− k + 1

2
.

Proof. Let Y :=

[
1 x⊤

x Diag(x) +M

]
be a certificate matrix in L̂S+(G). Then Y ⪰ 0, and thus

the Schur complement Diag(x) +M − xx⊤ is also positive semidefinite. Hence,

ē⊤(Diag(x) +M − xx⊤)ē = ē⊤x− (ē⊤x)2 + ē⊤Mē ≥ 0.

Next, notice that since Y e0 = diag(Y ), M [i, i] = 0 for every i ∈ V (G). Also, M [i, j] = 0 for
all edges {i, j} ∈ E(G). Thus, for every i ∈ V (G), Mei must contain at most n− deg(i)− 1 ≤
n − k − 1 positive entries, each being at most xi. Applying this for every i ∈ V (G) yields
ē⊤Mē ≤ (n− k − 1)ē⊤x. This gives ē⊤x ≤ n− k.

For (ii), the additional assumption assures that Mei ≤ n−k−1
2 xi, and so ē⊤Mē ≤ n−k−1

2 ē⊤x,

leading to the tighter bound ē⊤x ≤ n−k+1
2 . □
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Figure 19. A vertex-transitive graph G where αLS+(G) = α(G) and r+(G) > 1

Example 36. Consider the graph G where V (G) := {i0, i1 : i ∈ [8]} and

E(G) :=
{
{i0, j0} , {i1, j1} : {i, j} ∈ E(C

{1,2}
8 )

}
∪
{
{i0, j1} : {i, j} ∈ E(C

{1,3,4}
8 )

}
.

(See Figure 19, left.) Then G is k := 9-regular and vertex-transitive, with G ⊖ 10 being a 6-
vertex graph (Figure 19, right). Now notice that the edges {40, 71}, {50, 11}, and {60, 31} form
a perfect matching in G⊖10. Thus, max

{
ē⊤x : x ∈ FRAC(G⊖ 10)

}
≤ 3 = 1

2 |V (G⊖10)|. Since
G is vertex-transitive, the same must be true for all vertices i ∈ V (G), and so G satisfies the
conditions of Proposition 35(ii). Hence, αLS+(G) ≤ 16−9+1

2 = 4 = α(G). However, since G

contains C
{1,2}
8 as an induced subgraph, we see that r+(G) ≥ 2.

We next determine n+(3).

Proposition 37. n+(3) = 13. Moreover, the only vertex-transitive graph G where |V (G)| ≤ 13

and r+(G) = 3 is G17,2 := C
{1,5}
13 (Figure 17, centre).

Proof. Suppose a vertex-transitive graph G has n vertices, is k-regular and has LS+-rank 3. It
follows from Lemma 33 that 3 ≤ k ≤ n− 7. Thus, we see that n ≥ 10. As with in the proof of
Proposition 34, we may assume that G is connected.

There are 38 connected vertex-transitive graphs on n ∈ {10, 11, 12, 13} vertices which satisfy
the degree bounds from Lemma 33 with ℓ = 3 [RH20], which we list in Table 1. (For compactness,
we are listing these graphs in graph6 format.)

Next, notice that

• For every i ∈ {1, 6, 8, 10, 11, 12, 20}, Gi is bipartite, so these graphs all have LS+-rank 0.
• For every i ∈ {2, 3, 4, 7, 21, 26, 32, 35}, Gi − 1 is bipartite, so these graphs all have LS+-
rank 1.

• For every i ∈ {5, 9, 14, 15, 17, 18, 19, 22, 23, 24, 25, 27, 28, 29, 30, 34, 36, 37, 38}, Gi ⊖ 1 is
perfect, so these graphs all have LS+-rank at most 2.

• Notice that (G13⊖1)−12 and (G16⊖1)−8 are both bipartite, and so r+(G13), r+(G16) ≤
2.

• Finally, notice that G31 ⊖ 1 is the 5-wheel, which has LS+-rank 1. Thus, r+(G31) ≤ 2.
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i Gi

1 Is?@WxcU?

2 Is?HGtcU?

3 IsP@OkWHG

4 Js‘@IStU‘w?

5 Juk?IKeTPT?

6 Ks???wYP‘KL?

7 Ks?GOGUIQcKG

8 Ks?GOObDRCI_

9 Kt?GOHAOWsCg

10 Ks_?BLMLasF_

i Gi

11 Ks_?BLUR‘wFO

12 Ks_?BLeF_{N?

13 Ks_GagjLASko

14 Ksc?JLSQhSE‘

15 Ksc@ILKLAdDI

16 Ksd@?STWY[Eo

17 Ktk?IHBD_[kK

18 Kuk?GLDGqhDQ

19 K{cAGgeBQSeK

20 Ksa?BtuZa{Fo

i Gi

21 KsaIPKuUZkNG

22 KseXa‘JHrJLQ

23 KseY‘TIKZLKi

24 KsiYISiDZdMI

25 KsiZ?lEEZBnO

26 KtaHGthYaiis

27 KtiWBDRQqLfo

28 KtiY@DFQYefo

29 K{eY‘dIPhRCj

30 K{fw?DbWwuBX

i Gi

31 K}iWBDRIol@r

32 Ls_?GSTTPTLO\?

33 Ls‘?XGRQR@B‘Kc

34 Lts?GKEPPDHIKI

35 L|qC@|]JakiiIj

36 L}akqXXWomdULJ

37 L}nDAwyBgmGfGv

38 L~zTQgiDOT_n?~

Table 1. List of connected vertex-transitive graphs satisfying the degree bounds
from Lemma 33 with n ∈ {10, 11, 12, 13} and ℓ = 3, in graph6 format

This leaves G33, which is isomorphic to G := C
{1,5}
13 . We provide a LS2+ certificate pack-

age [AT25a] showing that 17
55 ē ∈ LS2+(G), which implies that αLS2+

(G) ≥ 221
55 > α(G) = 4. This

implies that r+(G) ≥ 3. Also, destroying a vertex in G yields an 8-vertex graph, which has
LS+-rank at most two by Theorem 2. Thus, it follows that r+(G) = 3. □

We next determine n+(4) using a similar analysis.

Proposition 38. n+(4) = 16. Moreover, the only vertex-transitive graph G where |V (G)| ≤ 16
and r+(G) = 4 is G17,3 (Figure 17, right).

Proof. Let G be a k-regular vertex-transitive graph on n vertices where r+(G) = 4. Again, we
may assume that G is connected. By Lemma 33, we know that 3 ≤ k ≤ n − 10, so n ≥ 13.
When n = 13, k = 3, and no such graph exists. So we may assume n ≥ 14.

Next, we look into the connected k-regular vertex-transitive graphs on n ∈ {14, 15, 16} vertices
which satisfy 3 ≤ k ≤ n− 10. There are 96 such graphs [RH20], which are listed in Table 2.

Observe that

• For every i ∈ {1, 2, 4, 5, 16, 18, 19, 20, 21, 22, 26, 29, 33, 34, 35, 36, 58, 59, 60}, Gi is bipar-
tite, so these graphs all have LS+-rank 0.

• For every i ∈ {3, 6, 11, 17, 37, 38, 61}, Gi−1 is bipartite, so these graphs all have LS+-rank
1.

• For every i ∈ {8, 12, 13, 15, 31, 32, 42, 45, 46, 53, 57, 65, 66, 67, 69, 73, 74, 75, 76, 77, 78, 79,
80, 81, 83, 84, 86, 88, 89, 90, 92, 96}, Gi ⊖ 1 is perfect, so these graphs all have LS+-rank
at most 2.

• The graphs

(G7 ⊖ 1)− 6, (G9 ⊖ 1)− 7, (G10 ⊖ 1)− 7, (G23 ⊖ 1)− 14,
(G24 ⊖ 1)− 14, (G25 ⊖ 1)− 6, (G27 ⊖ 1)− 6, (G28 ⊖ 1)− 7,
(G39 ⊖ 1)− 7

are all bipartite. Thus, r+(Gi) ≤ 2 for every i ∈ {7, 9, 10, 23, 24, 25, 27, 28, 39}.
• The graphs

(G14 ⊖ 1)− {6, 7} , (G40 ⊖ 1)− {7, 8} , (G52 ⊖ 1)− {7, 8}

are all bipartite. Thus, r+(Gi) ≤ 3 for every i ∈ {14, 40, 52}.
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i Gi

1 Ms???@KOpSBGHOD_?
2 Ms??OGKB?ccKS_WO?
3 Ms?GGSG@?bCQSGWC?
4 Ms_???VBpeHg[_Z??
5 Ms_??@eTPeHWJOF_?
6 Ms_??KEXbKBKEW]??
7 Ms_AHGHCihDaQOK__
8 Mts?GKE@QDCIQIKD?
9 Ns_?@DDDOTDASBL_Ho?
10 Ns_?ACKChIIDISR_Eo?
11 Ns_?GGAAohdWTGYOMC?
12 Nsc?GCCGyJI_I_QHEGO
13 Nsc?GCDP‘Bi_Q‘IOECG
14 Nto?AHBHPC‘PCgD?‘_g
15 Nuk?GGA@oLCIOIIPICO
16 Os???GA?WBBAEAP_CoBO?
17 Os?GOGEAOC?GCDGII?b?O
18 Os?GOO??AHGQGSDCAK@D?
19 Os?GOOD@_C?GCEGHI@B?G
20 Os_????@zKIgIgLGHW?r?
21 Os_????AwjKgJ_RGESAe?
22 Os_????BWfKoTOLGHS@U?
23 Os_??CDAGaiaIaX_HS@i?
24 Os_??CDCGQePJCX_ISAY?
25 Os_??DAGOZAqIGSCho@i?
26 Os_??KE@_KKKWWEEBBBo?
27 Os_??L@GOS‘SEKT@E‘BK?
28 Os_?A?_DOhA[BWQaDQBK?
29 Os_?GGC@?RaUSgISLGBc?
30 Os_?IGbC‘Ga_O‘ISB@QPG
31 Otk?GGB?WBgAOBD_@oJ?K
32 Ouk?GKC?_J?YGIODDCQ_a

i Gi

33 Osa????Dw^KwXgUWFKBs?
34 Osa????ExN@{UWXgNGBk?
35 Osa????WyfH[PwN_Fg@x?
36 Osa????WyuFKRWJgIs@m?
37 Osa??CH@gqctUSXgNGBk?
38 Osa??cQAWJIRKeZ_LgBX?
39 Osa?AKUB‘KKEWKERBHRs?
40 Osa?OGgPGqasKsSwLGbKO
41 OsaBA‘GP@‘dIHWEcas_]O
42 OseW?CBSaPgjK_IGcgZF?
43 OseW?CFOQ‘eAHPI‘h[BCo
44 OseW?CFOQ‘eAH‘IPh[BCo
45 OseW?CbOyHCaSaQQdO‘aH
46 OseW?CbOyPCaSaKPGhPSI
47 OseW?SFGHAiOKeQBGajF?
48 OseWOLAOYECXSLKADAHHB
49 Oseg?D@AqcgfWwEOEOHHB
50 Osf_?KFO‘CBRSSKQdDAP‘
51 Osf_GK_O@Ba[SLQcBJ@TA
52 OsiW??‘CjCiKPPQad[?m_
53 OsiW?CAOWNKQEQDWkUBoG
54 OsiW?CBWieHEPRK_DCGiB
55 OsiWA?RG_KiPWWQRAePU_
56 OsiWA@@AgMkXSkK_DCGiB
57 O{fw?CB?wE?XWKWKb@_oX
58 OsaC???FzrMkYwXwJw@|?
59 OsaC???RxnNKYw\WJs@}?
60 OsaC???]ZrK{XwFwB{B{?
61 OsaCB@_EWrKrXeFwB{B{?
62 OsaKYCQGbRIjXKLWJEHqc
63 OsaKYCcQXRBKSbLDmTBi_
64 OsaKYDDGgdLBUELQeibr?

i Gi

65 OsaKYPDHOiDFEM[wMPRcg
66 OsaKg?dQGid\[S[qLSQy_
67 OsaKg?hSZEkkTIIdJWPyA
68 OsaKiCaC‘RbMYKTYLabiC
69 OsaKiCdPPDaUBR]WNAboS
70 OsaSWSTOhDKiXQUEfBbr?
71 OsaSXCdOha‘T[DRRNEAyC
72 OsaSXDCSXRbKTBIdmSBY@
73 OsaSYHBGpH‘XDL]SNDBoK
74 Osedw?DOYFHBSZW\Fg@w‘
75 Osedw?HOYFGbSZW\Fg@w‘
76 Osedw@??pJhMP\UWEjBpA
77 OsfDw?@G‘bgmW\RWFFAyA
78 OsfDw@@GXPCZP]TSFDayA
79 OsfLg?@WYHcZQYKXJcPuA
80 Osqsw@@AXCclW]USEXaxA
81 Osqsy@@GWRcdGtUEESqyA
82 OtaCXOTHOphhRKSsKTJcK
83 OtaLw?@OaRgn[S[Kdk?z@
84 OtaLw?@ObBiNQ[P[fg@x@
85 OtaLw?BOBBhNP[S[fa@y@
86 OtaLy@@AWJg[WFSFfg@x@
87 OtaLyD‘SYQGhKBKB‘eOXb
88 Ota\W@@GYChJS]PZFc@u@
89 Otakw?@QYbKLPLOufc@u@
90 Otaky@@GWbhBPROlfc@u@
91 OtrTOGBW@‘hIP]G|Bg_tP
92 Ouj\w?@?YBcMSUILIhPTI
93 O{fL_@HKQJCZCsBW_pzp_
94 O{fL_CCQP‘GmCzB[C\Joo
95 O}akqPPWOV@iHIDHcROcj
96 O~aKYPDOxQBHHIGeacocj

Table 2. List of connected vertex-transtive graphs satisfying the degree bounds
from Lemma 33 with n ∈ {14, 15, 16} and ℓ = 4, in graph6 format

• The graphs

(G43 ⊖ 1)− 7, (G44 ⊖ 1)− 7, (G47 ⊖ 1)− 7, (G48 ⊖ 1)− 7,
(G49 ⊖ 1)− 7, (G54 ⊖ 1)− 7, (G55 ⊖ 1)− 8, (G56 ⊖ 1)− 7,
(G63 ⊖ 1)− 10, (G64 ⊖ 1)− 8, (G68 ⊖ 1)− 8, (G70 ⊖ 1)− 8,
(G71 ⊖ 1)− 8, (G72 ⊖ 1)− 8, (G85 ⊖ 1)− 8, (G87 ⊖ 1)− 8,
(G93 ⊖ 1)− 9, (G94 ⊖ 1)− 10

are all perfect. Thus, r+(Gi) ≤ 3 for every i ∈ {43, 44, 47, 48, 49, 54, 55, 56, 63, 64, 68, 70,
71, 72, 85, 87, 93, 94}.

• For every i ∈ {62, 91, 95}, observe that Gi ⊖ 1 has exactly 9 vertices, all of which have
degree at least 3, and thus Gi ⊖ 1 is not 3-minimal (since every 3-minimal graph must
have at least one vertex with degree 2 due to Theorem 4). Hence r+(Gi ⊖ 1) ≤ 2, which
implies that r+(Gi) ≤ 3.

• Next, for convenience, let H := G50 ⊖ 1 (Figure 20, left). Observe that, for every
i ∈ V (H), H ⊖ i is either a 5-vertex graph, or a 6-vertex graph which is not isomorphic
to G1,1 or G1,2. Thus, r+(H ⊖ i) ≤ 1 for every i ∈ V (H), which implies that r+(H) ≤ 2,
and thus r+(G50) ≤ 3. The same argument applies for H := G82⊖ 1 (Figure 20, centre).
Thus, r+(G50), r+(G82) ≤ 3.

• Next, consider the graph H := (G51 ⊖ 1) − 10 (Figure 20, right). Notice that {8, 11},
{9, 12}, and {7, 16} are all cut cliques in H, and one can show that r+(H) ≤ 1 by
decomposing H using Proposition 13. Thus implies that r+(G51) ≤ 3.

• Finally, G41 is the (5-regular) Clebsch graph, and so G41 ⊖ 1 yields the Peterson graph,
which has LS+-rank 1. (To see this, observe that the Peterson graph is vertex-transitive
in its own right, and destroying any vertex yields a bipartite graph.) Thus, r+(G41) ≤ 2.
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G50 ⊖ 1 G82 ⊖ 1 (G51 ⊖ 1)− 10

Figure 20. Illustrations for the proof of Proposition 38

This leaves G30, which is isomorphic to G := G17,3 in Figure 17. The attached LS3+ certificate

package [AT25a] shows that 26
81 ē ∈ LS3+(G), and thus αLS3+

(G) ≥ 416
81 > α(G) = 5, implying

that r+(G) ≥ 4. Also, observe that (G⊖ 1)− {11, 15} is a 9-cycle (LS+-rank 1), implying that
r+(G) ≤ 4. □

Coincidentally (or not?), G17,1, G17,2, and G17,3 are all 4-regular. Also, all three graphs have
some stretched-clique structures embedded in them, which are highlighted in Figure 21. First, as
mentioned in the proof of Proposition 34, G17,1−{1, 3} gives a copy of G1,2 ∈ K̂4,1. Also, notice

that G17,2 ⊖ 1 ∈ K̂4,2 and G17,3 ⊖ 1 ∈ K̂5,3. Moreover, in both cases, one can join a new vertex
to every vertex in the aforementioned stretched-clique subgraph and then 4-stretch the new
vertex to obtain the full graph. Thus, these graphs seem to share some structural similarities
with ℓ-minimal graphs, as they can also be obtained from K3 by a sequence of 1-joining and
k-stretching operations akin to that described in Corollary 24.
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8345
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14

G17,1 − {1, 3} G17,2 ⊖ 1 G17,3 ⊖ 1

Figure 21. Notable stretch-clique induced subgraphs of G17,1, G17,2, and G17,3

We end this section by proving a lower bound on n+(5).

Proposition 39. n+(5) ≥ 20.

Proof. Again, we may focus on connected vertex-transitive graphs which satisfy the degree
bounds from Lemma 33. It follows from the proof of Proposition 38 that no 16-vertex graph in
our consideration has LS+-rank 5, so we may assume n ≥ 17 here. There is a total of 58 such
graphs on n ∈ {17, 18, 19} vertices [RH20], as listed in Table 3. To prove our claim, it suffices
to show that all of these graphs have LS+-rank at most 4.

Observe that

• For every i ∈ {5, 6, 7, 10, 11, 12, 13, 15, 22, 23, 24, 25, 26}, Gi is bipartite, so these graphs
all have LS+-rank 0.
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i Gi

1 Ps_?GCD@?C@UDQIKIHBO_[A?
2 Ps_?GCDP?acOAHKcK_OqGQI?
3 Ps_?GGAP@C@MCYRGEW@O_SAC
4 Pts?GKE@OD?I?IGDG@QODK@O
5 Qs??OGC@?O@?GgCcCG_aOOD@?g?
6 Qs??WOC@?O??O‘GHAGaA_CI?_W?
7 Qs??WWG@?@?A?W?cA?h?SS@@_G?
8 Qs?GGSG@?@?A?W?cA?h?SS@@_G?
9 Qt?G?CG@?A_S?E?HG?I?DF??b??
10 Qs_?????@E‘[C[BKIQ@k?RO@c_?
11 Qs_?????AHgUO[HoAw?]?MG?wO?
12 Qs_?????AJCqA[CkIW@U?RC?s_?
13 Qs_?????AK‘MGsDKKgAd?Ig?\??
14 Qs_??GB@‘@gIDAA‘EcAU?I?‘O@G
15 Qs_??KE@?C?oALCRDEAaOYC@oG?
16 Qs_??KE@_K?K?WWEKB?oKE@‘w??
17 Qs_?G?C?aFCiAGCCdKAa_Q_OsA?
18 Qsc???A?QCcKPgHS@a?h@I‘@PG?
19 Qsc?GGB@?C_oOXGFIGAP@IA?oOG
20 Qsc?GKC@?D?IGYOdHA@‘?IADOC_

i Gi

21 Qts?GKE@OD?I?I?DC@Q?IQ?SoA_
22 Qsa??????V_}E[HkJIBL?]O@u??
23 Qsa??????mb[IkP[Hs@Y_[c@p_?
24 Qsa?????@ed[D[BkKwBH_US@Y_?
25 Qsa?????AR‘yHkD[MQ@r?Ug@f??
26 Qsa?????BEkUW[EwA{?^?VC?{O?
27 Qsa??CA?OJ@RDXIeIkBS_\G@wO?
28 Qsa??CCAATCjDSEgGiHTC[W@qO?
29 Qsa??KCOObCrBAEcBUBDCWGpx??
30 QsaG??A?QUGfHKDKDWOuA[g@pO?
31 QsaG??A?XfIYHGQCak?s‘XOPiA?
32 QsaG??aCQdKIDHIEGkAS‘HoOZA?
33 QsaH?_‘CaCgKQoPKch?kGIDGWgO
34 Qseg??B?oE_uOoSAceAaSIHHw@?
35 QsiW??A?PDaMSgWSGoQQBDd?hg?
36 QsiW??B?x?aDWSSgHGQKBIR?UK?
37 QsiW?D?OhCAIAW@qkAabCDBGig?
38 QsnO??ACWSGHOjGOCMGl_IaPDD?
39 QtaG?@@OgU_{W‘SQdA?h?HOKY?o
40 QtaG?C@?jEIFQcPWdO@I@ECGS_W

i Gi

41 QtaIA@@O‘E@T@UCLdA@H@EOGU?W
42 QtiW?CB??B‘T@rOKGIJ?‘SCS}??
43 QtiW?CB?GB?tArOSGBI_‘WCS}??
44 Q{fw?CB?wE?X?K?Kk@b?XE?oWBG
45 Rs_??CD@_KGAGAAhAgQP_KQ?gCA_CG
46 Rs_?GCD@?C?S@OAKaH‘OcSB@gOB_O?
47 Rs_?GGA?O@CRPEAOACHU?TG@GG‘_a?
48 Rts?GKE@OD?A?A?T?DP?DO@PGCH_C_
49 RsaC??@?gI‘TDTTTDTRTO\S@y_By??
50 RsaC?GAHAC‘dCtLIHYHrOU[@kaBeG?
51 RsaKg??AGagiGiQZEMQZ_Ky@iCBgCG
52 RsaKg??GYBg[HWSLDHYggIa‘Y_Py?O
53 RsaKg?@P@CDMSYCs@dJEcXJ@Wp@qP?
54 RsaSW_GGqHgXHKK@h?wj@AwPogJQ__
55 RsfLg?@?GAGNG]PTCTQPaKQGyGIw__
56 Rtq}w?@?WB_M?YOTCDQOiKAhIDPgDO
57 RujL_?@COP_[@WSTDDOdwBU‘aDBGDG
58 R}akq?D?wOC@CBSQkI_ZQAfGce?dcG

Table 3. List of connected vertex-transitive graphs on n ∈ {17, 18, 19} vertices
satisfying the degree bounds from Lemma 33 with ℓ = 5

• For every i ∈ {1, 8, 16, 27, 46, 49}, Gi − 1 is bipartite, so these graphs all have LS+-rank
1.

• For every i ∈ {4, 9, 19, 20, 21, 30, 34, 42, 43, 44, 48, 52, 55, 56}, Gi ⊖ 1 is perfect, so these
graphs all have LS+-rank at most 2.

• The graph (G17 ⊖ 1)− 8 is bipartite. Thus, r+(G17) ≤ 2.
• The graphs

(G2 ⊖ 1)− {6, 8} , (G3 ⊖ 1)− {8, 9} , (G28 ⊖ 1)− {7, 9} ,
(G29 ⊖ 1)− {11, 14} , (G31 ⊖ 1)− {7, 12} , (G32 ⊖ 1)− {7, 8} ,
(G33 ⊖ 1)− {7, 9} , (G45 ⊖ 1)− {10, 11} , (G47 ⊖ 1)− {11, 12} ,
(G50 ⊖ 1)− {9, 16} , (G51 ⊖ 1)− {8, 9}

are all bipartite. Thus, r+(Gi) ≤ 3 for every i ∈ {2, 3, 28, 29, 31, 32, 33, 45, 47, 50, 51}.
• The graphs

(G14 ⊖ 1)− {10, 13, 14} , (G18 ⊖ 1)− {6, 9, 10} , (G36 ⊖ 1)− {7, 8, 11} ,
(G37 ⊖ 1)− {7, 12, 13} , (G38 ⊖ 1)− {8, 9, 11} , (G39 ⊖ 1)− {8, 10, 12} ,
(G40 ⊖ 1)− {7, 8, 10}

are all bipartite. Thus, r+(Gi) ≤ 4 for every i ∈ {14, 18, 36, 37, 38, 39, 40}.
• For every i ∈ {35, 41, 53, 54, 57, 58}, observe that Gi ⊖ 1 has exactly 12 vertices, all of
which have degree at least 3. This implies that Gi ⊖ 1 is not 4-minimal, as it follows
from Theorem 4 that every 4-minimal graph has at least one vertex with degree 2. Hence
r+(Gi ⊖ 1) ≤ 3, which implies that r+(Gi) ≤ 4.

Thus, there does not exist a vertex-transitive graph on at most 19 vertices with LS+-rank 5,
which implies that n+(5) ≥ 20. □

We remark that there are 267 connected vertex-transitive graphs which satisfy the degree
bounds from Lemma 33 with n = 20 and ℓ = 5. While the observations we used in the proof
of Proposition 39 can be used to show that the majority of them have LS+-rank at most 4,
checking every graph in this set for a possible graph with LS+-rank 5 is still a non-trivial task.
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6. Concluding remarks and future work

In this manuscript, we took a deep dive into ℓ-minimal graphs, discovering many new instances
in the cases of ℓ = 3 and ℓ = 4. In particular, we are somewhat confident that we have found
every 3-minimal graph (Conjecture 27). We also identified aspects of our findings which align
with our pre-existing understanding of ℓ-minimal graphs, such as the prevalence of the stretched
cliques and the relevance of the clique number of a graph. The continuation of patterns found in
the newly-discovered ℓ-minimal graphs led to Conjectures 30, 31, and 32. On the other hand, we
also saw many surprises, such as the discovery of many ℓ-minimal graphs which are not stretched
cliques, the most striking of which perhaps being a 4-minimal graph which does not contain K6

as a graph minor (G14,12 from Figure 14). We hope that our findings will lead to fresh insights
in the study of lift-and-project relaxations of the stable set polytope of graphs, as well as in
closely-related problems. In addition, we also believe the framework of numerical certificates
developed in this manuscript can be adapted for very reliably and rigorously verifying solutions
in many other convex optimization problems.

To conclude, we mention several open problems which are relevant to our work herein.

Problem 40. Given ℓ ∈ N, what are the maximum and minimum possible edge densities of an
ℓ-minimal graph?

Given ℓ ∈ N, define

d−(ℓ) := min

{
|E(G)|(|V (G)|

2

) : G is an ℓ-minimal graph

}
,

d+(ℓ) := max

{
|E(G)|(|V (G)|

2

) : G is an ℓ-minimal graph

}
.

We first raised the problem of computing d−(ℓ) and d+(ℓ) in [AT24a], and have made some
progress on this front since with Theorem 7 and the ℓ-minimal graphs discovered herein. Here
is what we currently know about these two quantities for ℓ ≤ 4:

ℓ 1 2 3 4

d−(ℓ) 3
3

8
15

14
36 ≤ 21

66

d+(ℓ) 3
3

9
15 ≥ 19

36 ≥ 29
66

In particular, the new 3- and 4-minimal graphs discovered in this manuscript seem to suggest
that d−(ℓ) is attained by a sparse stretched clique for every ℓ ≥ 1, while d+(ℓ) is likely not
attained by a stretched clique for ℓ ≥ 3.

Problem 41. Can we characterize exactly when the vertex-stretching operation is LS+-rank
increasing?

Recall that the vertex-stretching operation is generally LS+-rank non-decreasing (Theorem 3).
With Theorem 7, Proposition 19, and the new ℓ-minimal graphs discovered herein, we now know
of a range of situations where the vertex-stretching operation increases the LS+-rank of the
underlying graph by one. It would be interesting to characterize exactly when the operation is
LS+-rank increasing, as well as find out whether it is possible for a vertex-stretching operation
to increase the rank of a graph by two or more.

Problem 42. Can we develop better tools for proving rank upper bounds?

In this manuscript, we proposed the framework of LSℓ+ certificate packages to help establish
LS+-rank lower bounds. However, we currently do not know of an analogous tool for proving rank
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upper bounds. For instance, it would be helpful to develop theoretical and/or computational
tools to show that the graphs we saw with r+(G) ≲ ℓ indeed satisfy r+(G) ≤ ℓ. Progress in this
direction will solidify our understanding of ℓ-minimal graphs, and represents a step towards a
combinatorial characterization of these graphs.

On a related topic, we can adopt the notions of LSℓ+ certificate packages to the duals of the
SDPs we have considered in this work. Doing so has the potential of generating more reliable
certificates to conclude that γℓ(G, a) = 1.
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